Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists Discover Way to Engineer New Properties on Ultra-Thin Nanomaterials

23.01.2014
Tool opens door for design of new phases of materials

Physicists have engineered novel magnetic and electronic phases in the ultra-thin films of in a specific electronic magnetic material, opening the door for researchers to design new classes of material for the next generation of electronic and other devices.

“Pressure is an absolutely fantastic tool to change the properties of any compound,” said Jak Chakhalian, professor of physics at the University of Arkansas. “But how do you apply pressure to something that is nanoscale? We’ve finally found a way to systematically exert ‘pressure’ on this thin nanomaterial, which has only a few atomic layers, to enable new electronic and magnetic phases.”

An article detailing the finding, “Heterointerface engineered electronic and magnetic phases of NdNiO3 thin films,” was published Nov. 6 in Nature Communications, an online journal published by the journal Nature.

Chakhalian and his former doctoral student Jian Liu found a way to apply pressure to the magnetic material by varying the distances between atoms with a crystal lattice substrate. The compression forced the material into new phases, with intriguing properties not attainable in the larger crystals. Thus, the physicists developed a tool that allows them to control and engineer the novel behavior of the nanomaterial on an atomic scale, Chakhalian said.

“In general, nature is remarkably scalable,” he said. “If a material is a conductor of electricity, it doesn’t matter what size it is; it will conduct electricity. The naïve expectation in the 1990s was that anything we shrunk down to nano size would act profoundly differently, and we did develop many remarkable tools that were capable of shrinking them down to hundreds, and recently, tens of nanometers. But it turned out we didn’t go far enough. As we know now, we really need to go one magnitude lower: the atomic scale. Then these things get really strange.

“In order to find out the fundamental reason for how material properties emerge, for example why a material conducts electricity or why it is magnetic, I need to go smaller and smaller,” he said.

That’s why Chakhalian and his researchers are exploring the behavior of materials at the size several angstroms per layer, a unit equal to one-hundred millions of a centimeter.

Liu, now a postdoctoral fellow at Lawrence Berkeley National Laboratory in California, was the lead researcher, and the results were part of his doctoral thesis at the U of A. Benjamin A. Gray, a doctoral student, prepared and characterized the samples and performed measurements.

Chakhalian holds the Charles E. and Clydene Scharlau Endowed Professorship and directs the Laboratory for Artificial Quantum Materials at the University of Arkansas.

The results were obtained through a collaborative effort with Mehdi Kargarian and Gregory A. Fiete of the University of Texas at Austin, James M. Rondinelli at Drexel University in Philadelphia, Phil J. Ryan and John W. Freeland of the Advanced Photon Source at Argonne National Lab outside Chicago; and Alejandro Cruz, Nadeem Tahir, Yi-De Chuang and Jinghua Guo of the Advanced Light Source at Lawrence Berkeley National Laboratory.

Contact:

Jak Chakhalian, professor, physics
J. William Fulbright College of Arts and Sciences
479-575-4313, jchakh@uark.edu

Chris Branam | Newswise
Further information:
http://www.uark.edu

More articles from Materials Sciences:

nachricht Breaking bad metals with neutrons
16.01.2018 | DOE/Argonne National Laboratory

nachricht White graphene makes ceramics multifunctional
16.01.2018 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>