Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists Discover Way to Engineer New Properties on Ultra-Thin Nanomaterials

23.01.2014
Tool opens door for design of new phases of materials

Physicists have engineered novel magnetic and electronic phases in the ultra-thin films of in a specific electronic magnetic material, opening the door for researchers to design new classes of material for the next generation of electronic and other devices.

“Pressure is an absolutely fantastic tool to change the properties of any compound,” said Jak Chakhalian, professor of physics at the University of Arkansas. “But how do you apply pressure to something that is nanoscale? We’ve finally found a way to systematically exert ‘pressure’ on this thin nanomaterial, which has only a few atomic layers, to enable new electronic and magnetic phases.”

An article detailing the finding, “Heterointerface engineered electronic and magnetic phases of NdNiO3 thin films,” was published Nov. 6 in Nature Communications, an online journal published by the journal Nature.

Chakhalian and his former doctoral student Jian Liu found a way to apply pressure to the magnetic material by varying the distances between atoms with a crystal lattice substrate. The compression forced the material into new phases, with intriguing properties not attainable in the larger crystals. Thus, the physicists developed a tool that allows them to control and engineer the novel behavior of the nanomaterial on an atomic scale, Chakhalian said.

“In general, nature is remarkably scalable,” he said. “If a material is a conductor of electricity, it doesn’t matter what size it is; it will conduct electricity. The naïve expectation in the 1990s was that anything we shrunk down to nano size would act profoundly differently, and we did develop many remarkable tools that were capable of shrinking them down to hundreds, and recently, tens of nanometers. But it turned out we didn’t go far enough. As we know now, we really need to go one magnitude lower: the atomic scale. Then these things get really strange.

“In order to find out the fundamental reason for how material properties emerge, for example why a material conducts electricity or why it is magnetic, I need to go smaller and smaller,” he said.

That’s why Chakhalian and his researchers are exploring the behavior of materials at the size several angstroms per layer, a unit equal to one-hundred millions of a centimeter.

Liu, now a postdoctoral fellow at Lawrence Berkeley National Laboratory in California, was the lead researcher, and the results were part of his doctoral thesis at the U of A. Benjamin A. Gray, a doctoral student, prepared and characterized the samples and performed measurements.

Chakhalian holds the Charles E. and Clydene Scharlau Endowed Professorship and directs the Laboratory for Artificial Quantum Materials at the University of Arkansas.

The results were obtained through a collaborative effort with Mehdi Kargarian and Gregory A. Fiete of the University of Texas at Austin, James M. Rondinelli at Drexel University in Philadelphia, Phil J. Ryan and John W. Freeland of the Advanced Photon Source at Argonne National Lab outside Chicago; and Alejandro Cruz, Nadeem Tahir, Yi-De Chuang and Jinghua Guo of the Advanced Light Source at Lawrence Berkeley National Laboratory.

Contact:

Jak Chakhalian, professor, physics
J. William Fulbright College of Arts and Sciences
479-575-4313, jchakh@uark.edu

Chris Branam | Newswise
Further information:
http://www.uark.edu

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>