Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicist says nanoparticle assembly is like building with LEGOs

14.10.2011
New processes that allow nanoparticles to assemble themselves into designer materials could solve some of today's technology challenges, Alex Travesset of Iowa State University and the Ames Laboratory reports in the Oct. 14 issue of the journal Science.

Travesset, an associate professor of physics and astronomy and an associate of the U.S. Department of Energy's Ames Laboratory, writes in the journal's Perspectives section that the controlled self-assembly of nanoparticles could help researchers create new materials with unique electrical, optical, mechanical or transport properties.


This image shows a crystal of nanoparticles (the red and blue spheres) held together by DNA strands (the orange lines) via the hybridization of complementary sequences (the blue and red rings). Credit: Image courtesy of Chris Knorowski/Iowa State University/Ames Laboratory

"Nanoparticle self-assembly has entered the LEGO era," Travesset said. "You can really work with nanoparticles in the same way you can work with LEGOs. This represents a breakthrough in the way we can manipulate matter. Really revolutionary applications will come."

In his commentary, Travesset reports on the ramifications of a scientific paper also published in the Oct. 14 issue of Science. Lead authors of the scientific paper are Chad Mirkin, director of the International Institute for Nanotechnology at Northwestern University in Evanston, Ill., and George Schatz, a professor of chemistry at Northwestern. Their research team describes new technologies that use complementary DNA strands to link nanoparticles and control how the particles precisely assemble into target structures.

Nanoparticles are so small - just billionths of a meter - that it is practically impossible to assemble real materials particle by particle. Past attempts to induce their self-assembly have been successful in only a handful of systems and in very restrictive conditions.

The developments by the Mirkin and Schatz research team are "likely to elevate DNA-programmed self-assembly into a technique for the design of nanoparticle structures a la carte," Travesset wrote.

Travesset's research program includes theoretical studies of the assembly of nanoparticles and how they can be uniformly mixed with polymers. A research paper describing some of his findings was published in the May 27 issue of the journal Physical Review Letters (Dynamics and Statics of DNA-Programmable Nanoparticle Self-Assembly and Crystallization).

With the development of efficient self-assembly technologies, Travesset said there's tremendous potential for nanoparticle science.

"Being able to assemble nanoparticles with such control represents a major accomplishment in our quest to manipulate matter," he wrote in Science. "There are immediate important applications related to catalysis, medical sensing, new optical materials or metamaterials, and others that will follow from these studies.

"Most likely, however, many other applications will arise as we dig deeper, understand better, expand further, and tinker with the opportunities provided by these materials."

Alex Travesset | EurekAlert!
Further information:
http://www.ameslab.gov

Further reports about: DNA strand Lego Travesset nanoparticle specimen processing

More articles from Materials Sciences:

nachricht Engineers develop smart material that changes stiffness when twisted or bent
15.02.2018 | Iowa State University

nachricht Breaking local symmetry: Why water freezes but silica forms a glass
14.02.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>