Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photonics: Think thin, think vibrant

30.08.2012
Flat panel displays and many digital devices require thin, efficient and low-cost light-emitters for applications. The pixels that make up the different colors on the display are typically wired to complex electronic circuits, but now researchers at A*STAR have developed a display technology that requires a much simpler architecture for operation.

Flat panel displays, mobile phones and many digital devices require thin, efficient and low-cost light-emitters for applications. The pixels that make up the different colors on the display are typically wired to complex electronic circuits that control their operation.


Schematic of the tunable color filter. The combination of a gold film with ring-shaped holes and the use of liquid crystals (red and green) enables pixels of a defined color that can be turned on and off. © 2012 Y. J. Liu

Jing Hua Teng at the A*STAR Institute of Materials Research and Engineering and co-workers have now developed a display technology that requires a much simpler architecture for operation. They demonstrated that combining a thin perforated gold film with a liquid crystal layer is all that it takes to make an efficient color filter.

“Our color filters are a lot thinner and more compact than conventional thin-film-based color filters,” says Teng. “The colors of these filters can be tuned with ease so they are very versatile in applications.”

The color selection of the devices comes from the patterned gold film. The collective motions of the electrons on the film surface — the so-called surface plasmons — absorb light at wavelengths that depend on the details of these patterns. In the present case, the patterns are narrow, nanometer-sized rings cut out of the films (see image). As the diameter of the rings changes, so does the color of the metal film. Pixels of a different color can be realized simply by patterning rings of different sizes across the same gold film.

To realize a full display, however, each of these pixels needs to be turned on and off individually. This is where liquid crystals come in.

Liquid crystals are molecules that can be switched between two different states by external stimuli, such as ultraviolet light. In their normal state the crystals let visible light pass through so that the pixel is turned on. But when ultraviolet is also present, the structure of the liquid crystal molecules will change so that it absorbs visible light (i.e. the pixel is turned off). This process can be repeated over many cycles without degrading the device itself.

Although the device works in principle, it remains a concept on the drawing board for now. This is because there are still many issues that need to be overcome, for example, the optimization of the switching speed and the contrast between ‘on’ and ‘off’ states. In future work, the researchers will need to extend their ideas so that their device can serve a larger area and produce the fundamental colors red, green and blue.

Teng and his team are quite optimistic that they will achieve this soon.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering.

References:

Liu, Y. J., Si, G. Y., Leong, E. S. P., Xiang, N., Danner, A. J. & Teng, J. H. Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays. Advanced Materials 24, OP131–OP135 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Borophene shines alone as 2-D plasmonic material
21.11.2017 | Rice University

nachricht Quantum dots amplify light with electrical pumping
21.11.2017 | DOE/Los Alamos National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>