Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photonics: strong vibrations

10.05.2012
A new approach to generating terahertz radiation will lead to new imaging and sensing applications. The low energy of the radiation means that it can pass through materials that are otherwise opaque, opening up uses in imaging and sensing — for example, in new security scanners. In practice, however, applications have been difficult to implement.

Terahertz (THz) electromagnetic radiation has promising properties for a wide range of applications. The low energy of the radiation means that it can pass through materials that are otherwise opaque, opening up uses in imaging and sensing — for example, in new security scanners.


Terahertz (THz) generation. A strong THz emission from the center of the device is observed in the tip-to-tip design (top). The electrodes are the black lines in the center of the device. The colours show the electric field from low (blue) to high (red) values. Much weaker electric fields and THz emission are seen in the interdigitated electrode design (bottom). Copyright : From Ref. 1 © 2012 H. Tanoto

In practice, however, applications have been difficult to implement. Terahertz radiation is a difficult portion of the electromagnetic spectrum to utilize. The frequencies of the region are higher than the mega and gigahertz frequencies achievable with conventional electronic circuits, but are too low-frequency to be compatible with optical instruments.

“The key challenges for THz technology are the development of a compact high power source and high sensitivity detector operating at room temperature,” explains Jinghua Teng of the A*STAR Institute of Materials Research and Engineering. A recent discovery made by Teng’s team of a new, efficient protocol for THz wave generation that utilizes the enhancement of light between nanometer-scale electrical contacts may provide a solution.

One method for creating continuous THz radiation involves directing two optical laser beams of almost similar frequencies at a suitable nonlinear material, such as certain semiconductors causing light emission exactly at the frequency difference of the two laser beams. If this difference is sufficiently small, the radiation produced falls within the THz spectrum.

However, this process is rather inefficient and requires strong light fields. Fortunately, strong amplification of light can occur near small metallic objects that act as mini antennas. This antenna effect occurs with the small metal contacts that are needed to link the non-linear material that creates the THz emission — in the current case a variant of the common semiconductor gallium arsenide.

Normally, these electrical contacts are arranged such that they resemble the fingers of interlocked hands reaching into each other. However, the A*STAR researchers developed a revised design in which the electrodes are arranged tip to tip (see top of the above image). This means that the gap between the electrodes is much narrower and also results in the alignment of the electrical field with the THz light waves, which leads to a considerably stronger antenna enhancement.

Using the new arrangement the A*STAR team were able to generate THz radiation of about 100 times the strength of that produced by conventional systems. The work suggests that these devices can be miniaturized significantly for compact yet powerful THz sources. “This approach will greatly facilitate the applications of THz technology in areas such as gas sensing, non-destructive inspection and testing, high resolution spectroscopy, product quality monitoring and bio-imaging,” says Teng.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering.

References:

Tanoto, H. et al. Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer. Nature Photonics 6, 121–126 (2012).

Eugene Low | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

New research could literally squeeze more power out of solar cells

20.04.2018 | Physics and Astronomy

New record on squeezing light to one atom: Atomic Lego guides light below one nanometer

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>