Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New photonic crystals have both electronic and optical properties

25.07.2011
In an advance that could open new avenues for solar cells, lasers, metamaterials and more, researchers at the University of Illinois have demonstrated the first optoelectronically active 3-D photonic crystal.

“We’ve discovered a way to change the three-dimensional structure of a well-established semiconductor material to enable new optical properties while maintaining its very attractive electrical properties,” said Paul Braun, a professor of materials science and engineering and of chemistry who led the research effort.

The team published its advance in the journal Nature Materials.

Photonic crystals are materials that can control or manipulate light in unexpected ways thanks to their unique physical structures. Photonic crystals can induce unusual phenomena and affect photon behavior in ways that traditional optical materials and devices can’t. They are popular materials of study for applications in lasers, solar energy, LEDs, metamaterials and more.

However, previous attempts at making 3-D photonic crystals have resulted in devices that are only optically active that is, they can direct light but not electronically active, so they can’t turn electricity to light or vice versa.

The Illinois team’s photonic crystal has both properties.

“With our approach to fabricating photonic crystals, there’s a lot of potential to optimize electronic and optical properties simultaneously,” said Erik Nelson, a former graduate student in Braun’s lab who now is a postdoctoral researcher at Harvard University. “It gives you the opportunity to control light in ways that are very unique to control the way it’s emitted and absorbed or how it propagates.”

To create a 3-D photonic crystal that is both electronically and optically active, the researchers started with a template of tiny spheres packed together. Then, they deposit gallium arsenide (GaAs), a widely used semiconductor, through the template, filling in the gaps between the spheres.

The GaAs grows as a single crystal from the bottom up, a process called epitaxy. Epitaxy is common in industry to create flat, two-dimensional films of single-crystal semiconductors, but Braun’s group developed a way to apply it to an intricate three-dimensional structure.

“The key discovery here was that we grew single-crystal semiconductor through this complex template,” said Braun, who also is affiliated with the Beckman Institute for Advanced Science and Technology and with the Frederick Seitz Materials Research Laboratory at Illinois. “Gallium arsenide wants to grow as a film on the substrate from the bottom up, but it runs into the template and goes around it. It’s almost as though the template is filling up with water. As long as you keep growing GaAs, it keeps filling the template from the bottom up until you reach the top surface.”

The epitaxial approach eliminates many of the defects introduced by top-down fabrication methods, a popular pathway for creating 3-D photonic structures. Another advantage is the ease of creating layered heterostructures. For example, a quantum well layer could be introduced into the photonic crystal by partially filling the template with GaAs and then briefly switching the vapor stream to another material.

Once the template is full, the researchers remove the spheres, leaving a complex, porous 3-D structure of single-crystal semiconductor. Then they coat the entire structure with a very thin layer of a semiconductor with a wider bandgap to improve performance and prevent surface recombination.

To test their technique, the group built a 3-D photonic crystal LED the first such working device.

Now, Braun’s group is working to optimize the structure for specific applications. The LED demonstrates that the concept produces functional devices, but by tweaking the structure or using other semiconductor materials, researchers can improve solar collection or target specific wavelengths for metamaterials applications or low-threshold lasers.

“From this point on, it’s a matter of changing the device geometry to achieve whatever properties you want,” Nelson said. It really opens up a whole new area of research into extremely efficient or novel energy devices.

The U.S. Department of Energy and the Army Research Office supported this work. Other Illinois faculty involved in the project are electrical and computer engineering professors James Coleman and Xiuling Li, and materials science and engineering professor John Rogers.

Editor's notes: To reach Paul Braun, call 217-244-7293; email pbraun@illinois.edu.

The paper, Epitaxial Growth of Three-Dimensionally Architectured Optoelectronic Devices, is available from the News Bureau.

Liz Ahlberg | University of Illinois
Further information:
http://www.illinois.edu

More articles from Materials Sciences:

nachricht Robust and functional – surface finishing by suspension spraying
19.09.2017 | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

nachricht Graphene and other carbon nanomaterials can replace scarce metals
19.09.2017 | Chalmers University of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>