Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paper-thin e-skin responds to touch by lighting up

22.07.2013
Material holds promise for sensory robotics, interactive environments

A new milestone by engineers at the University of California, Berkeley, can help robots become more touchy-feely, literally.


Shown is a fully fabricated 16x16 pixel e-skin that lights up when touched. Credit: Photo by Ali Javey and Chuan Wang

A research team led by Ali Javey, UC Berkeley associate professor of electrical engineering and computer sciences, has created the first user-interactive sensor network on flexible plastic. The new electronic skin, or e-skin, responds to touch by instantly lighting up. The more intense the pressure, the brighter the light it emits.

"We are not just making devices; we are building systems," said Javey, who also has an appointment as a faculty scientist at the Lawrence Berkeley National Laboratory. "With the interactive e-skin, we have demonstrated an elegant system on plastic that can be wrapped around different objects to enable a new form of human-machine interfacing."

This latest e-skin, described in a paper to be published online this Sunday, July 21, in the journal Nature Materials, builds on Javey's earlier work using semiconductor nanowire transistors layered on top of thin rubber sheets.

In addition to giving robots a finer sense of touch, the engineers believe the new e-skin technology could also be used to create things like wallpapers that double as touchscreen displays and dashboard laminates that allow drivers to adjust electronic controls with the wave of a hand.

"I could also imagine an e-skin bandage applied to an arm as a health monitor that continuously checks blood pressure and pulse rates," said study co-lead author Chuan Wang, who conducted the work as a post-doctoral researcher in Javey's lab at UC Berkeley.

The experimental samples of the latest e-skin measure 16-by-16 pixels. Within each pixel sits a transistor, an organic LED and a pressure sensor.

"Integrating sensors into a network is not new, but converting the data obtained into something interactive is the breakthrough," said Wang, who is now an assistant professor of electrical and computer engineering at Michigan State University. "And unlike the stiff touchscreens on iPhones, computer monitors and ATMs, the e-skin is flexible and can be easily laminated on any surface."

To create the pliable e-skin, the engineers cured a thin layer of polymer on top of a silicon wafer. Once the plastic hardened, they could run the material through fabrication tools already in use in the semiconductor industry to layer on the electronic components. After the electronics were stacked, they simply peeled off the plastic from the silicon base, leaving a freestanding film with a sensor network embedded in it.

"The electronic components are all vertically integrated, which is a fairly sophisticated system to put onto a relatively cheap piece of plastic," said Javey. "What makes this technology potentially easy to commercialize is that the process meshes well with existing semiconductor machinery."

Javey's lab is now in the process of engineering the e-skin sensors to respond to temperature and light as well as pressure.

UC Berkeley co-authors on this study are David Hwang, Zhibin Yu and Kuniharu Takei, all of whom have joint appointments at the Berkeley Lab. Additional study co-authors are Junwoo Park, Teresa Chen and Biwu Ma from the Berkeley Lab.

The Defense Advanced Research Projects Agency and the Department of Energy helped support this research.

Sarah Yang | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>