Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anything goes in oxides

10.01.2011
The interaction of electrons in an unusual oxide reveals new ways to tune electrical conductivity

Researchers in Japan have demonstrated why the material Sr2IrO4—a transition metal oxide—that was expected to be an electrical conductor is actually an insulator[1]. Harnessing this material’s unusual conducting properties could form the basis for novel electronic devices or superconductors.

The difference between an electrical conductor and an insulator is that electrons in the latter cannot move freely through the crystal. This is because insulators have a gap in their energy spectrum that electrons cannot overcome. Hiroshi Watanabe, Tomonori Shirakawa and Seiji Yunoki from the RIKEN Advanced Science Institute in Wako and the Japan Science and Technology Agency have now uncovered how the electronic gap in Sr2IrO4 arises. Other RIKEN scientists had shown previously that the compound is an insulator[2].

Sr2IrO4 is a member of the oxygen-containing compounds based on transition metals that have high atomic numbers. In these transition metals, the electrons of elements such as nickel, copper or cobalt strongly interact with each other, which results in effects such as superconductivity or magnetism.

In compounds made from the heavier transition metals, the outermost electrons circle the atoms in the so-called ‘5d electron shell’, which is relatively distant from the core. For electrons that occupy this shell there is an unusually strong interaction between their magnetic property, called spin, and the orbital motion around the atomic nucleus. The energy of this spin–orbit interaction is as large as the electron’s energy of motion or the energy arising from the electrostatic interaction between the electrons. This has dramatic consequences on their electronic properties, according to Yunoki, who led the research team. “Literally anything can happen in 5d electron systems because of the subtle balance of those three fundamental energy scales.”

How this energetic interplay modifies the electron conducting behavior in Sr2IrO4 became evident from the researchers’ calculations. The strong spin–orbit interaction in Sr2IrO4 shifts some of the electronic states to higher energies, which is sufficiently strong to create an energy gap in the electronic states.

Furthermore, the calculations reveal an intriguing connection to the family of high-temperature superconductors that have a similar gap in their electronic states. In these compounds, superconductivity is achieved through a small addition of atoms introducing an electron surplus. The researchers are now investigating the possibility that this could also be the case here. “It would have an enormous impact if one can make Sr2IrO4 superconducting,” says Yunoki. “We hope that our theoretical calculations will be of help to experimentalists.”

The corresponding author for this highlight is based at the Computational Condensed Matter Physics Laboratory, RIKEN Advanced Science Institute

Journal information

1.Watanabe, H., Shirakawa, T. & Yunoki, S. Microscopic study of a spin-orbit-induced Mott insulator in Ir oxides. Physical Review Letters 105, 216410 (2010).

2. Kim, B. J., Ohsumi, H., Komesu, T., Sakai, S., Morita, T., Takagi, H & Arima, T. Phase-sensitive observation of a spin-orbital Mott state in Sr2IrO4. Science 323, 1329–1332 (2009).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>