Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OSU researchers discover new adhesive for tape, label industry

07.07.2010
An incidental discovery in a wood products lab at Oregon State University has produced a new pressure-sensitive adhesive that may revolutionize the tape industry – an environmentally benign product that works very well and costs much less than existing adhesives based on petrochemicals.

The new adhesive can be produced from a range of vegetable oils, and may find applications for duct tape, packaging tape, stick-on notes, labels, even postage stamps – almost any type of product requiring a pressure-sensitive adhesive.

There are thousands of pressure-sensitive tape products, and analysts say it’s a $26 billion global industry.

The discovery was made essentially by accident while OSU scientists were looking for something that could be used in a wood-based composite product – an application that would require the adhesive to be solid at room temperature and melt at elevated temperatures.

For that, the new product was a failure.

“We were working toward a hot-melt composite adhesive that was based on inexpensive and environmentally friendly vegetable oils,” said Kaichang Li, a professor of wood science and engineering in the OSU College of Forestry. “But what we were coming up with was no good for that purpose, it wouldn’t work.”

“Then I noticed that at one stage of our process this compound was a very sticky resin,” Li said. “I told my postdoctoral research associate, Anlong Li, to stop right there. We put some on a piece of paper, pressed it together and it stuck very well, a strong adhesive.”

Shifting gears, the two researchers then worked to develop a pressure-sensitive adhesive, the type used on many forms of tape, labels, and notepads.

“It’s really pretty amazing,” Li said. “This adhesive is incredibly simple to make, doesn’t use any organic solvents or toxic chemicals, and is based on vegetable oils that would be completely renewable, not petrochemicals. It should be about half the cost of existing technologies and appears to work just as well.”

There have been previous attempts to make pressure-sensitive adhesives from vegetable oils, Li said, but they used the same type of polymerization chemistry as the acrylate-based petrochemicals now used to make tape. They didn’t cost much less or perform as well, he said.

The new approach used at OSU is based on a different type of polymerization process and produces pressure-sensitive adhesives that could be adapted for a wide range of uses, perform well, cost much less, and would be made from renewable crops such as soy beans, corn or canola oil, instead of petroleum-based polymers.

The technology should be fairly easy to scale-up and commercialize, Li said.

“OSU has applied for a patent on this technology, and we’re looking right now for the appropriate development and commercialization partner,” said Denis Sather, licensing associate with the OSU Office of Technology Transfer. “We believe this innovation has the potential to replace current pressure-sensitive adhesives with a more environmentally friendly formulation at a competitive price."

Li, an expert in wood chemistry, composites and adhesives, has already changed the face of the wood composites industry. His research created a formaldehyde-free adhesive that can be used in the production of plywood and particle board that is non-toxic, and is now becoming more widely used in that industry. That invention was inspired when he watched mussels clinging tenaciously to rocks despite being pounded by ocean waves, and he later duplicated in a laboratory the type of compound they use as an adhesive to accomplish that.

For these advances, in 2007 Li received the Presidential Green Chemistry Challenge Award from the Environmental Protection Agency. It recognized his continued work to reduce toxic chemicals used in manufacturing processes.

About the OSU College of Forestry: For a century, the College of Forestry has been a world class center of teaching, learning and research. It offers graduate and undergraduate degree programs in sustaining ecosystems, managing forests and manufacturing wood products; conducts basic and applied research on the nature and use of forests; and operates 14,000 acres of college forests.

Kaichang Li | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Materials Sciences:

nachricht Reliable molecular toggle switch developed
30.03.2017 | Karlsruher Institut für Technologie (KIT)

nachricht Researchers shoot for success with simulations of laser pulse-material interactions
29.03.2017 | DOE/Oak Ridge National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>