Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OSU researchers discover new adhesive for tape, label industry

07.07.2010
An incidental discovery in a wood products lab at Oregon State University has produced a new pressure-sensitive adhesive that may revolutionize the tape industry – an environmentally benign product that works very well and costs much less than existing adhesives based on petrochemicals.

The new adhesive can be produced from a range of vegetable oils, and may find applications for duct tape, packaging tape, stick-on notes, labels, even postage stamps – almost any type of product requiring a pressure-sensitive adhesive.

There are thousands of pressure-sensitive tape products, and analysts say it’s a $26 billion global industry.

The discovery was made essentially by accident while OSU scientists were looking for something that could be used in a wood-based composite product – an application that would require the adhesive to be solid at room temperature and melt at elevated temperatures.

For that, the new product was a failure.

“We were working toward a hot-melt composite adhesive that was based on inexpensive and environmentally friendly vegetable oils,” said Kaichang Li, a professor of wood science and engineering in the OSU College of Forestry. “But what we were coming up with was no good for that purpose, it wouldn’t work.”

“Then I noticed that at one stage of our process this compound was a very sticky resin,” Li said. “I told my postdoctoral research associate, Anlong Li, to stop right there. We put some on a piece of paper, pressed it together and it stuck very well, a strong adhesive.”

Shifting gears, the two researchers then worked to develop a pressure-sensitive adhesive, the type used on many forms of tape, labels, and notepads.

“It’s really pretty amazing,” Li said. “This adhesive is incredibly simple to make, doesn’t use any organic solvents or toxic chemicals, and is based on vegetable oils that would be completely renewable, not petrochemicals. It should be about half the cost of existing technologies and appears to work just as well.”

There have been previous attempts to make pressure-sensitive adhesives from vegetable oils, Li said, but they used the same type of polymerization chemistry as the acrylate-based petrochemicals now used to make tape. They didn’t cost much less or perform as well, he said.

The new approach used at OSU is based on a different type of polymerization process and produces pressure-sensitive adhesives that could be adapted for a wide range of uses, perform well, cost much less, and would be made from renewable crops such as soy beans, corn or canola oil, instead of petroleum-based polymers.

The technology should be fairly easy to scale-up and commercialize, Li said.

“OSU has applied for a patent on this technology, and we’re looking right now for the appropriate development and commercialization partner,” said Denis Sather, licensing associate with the OSU Office of Technology Transfer. “We believe this innovation has the potential to replace current pressure-sensitive adhesives with a more environmentally friendly formulation at a competitive price."

Li, an expert in wood chemistry, composites and adhesives, has already changed the face of the wood composites industry. His research created a formaldehyde-free adhesive that can be used in the production of plywood and particle board that is non-toxic, and is now becoming more widely used in that industry. That invention was inspired when he watched mussels clinging tenaciously to rocks despite being pounded by ocean waves, and he later duplicated in a laboratory the type of compound they use as an adhesive to accomplish that.

For these advances, in 2007 Li received the Presidential Green Chemistry Challenge Award from the Environmental Protection Agency. It recognized his continued work to reduce toxic chemicals used in manufacturing processes.

About the OSU College of Forestry: For a century, the College of Forestry has been a world class center of teaching, learning and research. It offers graduate and undergraduate degree programs in sustaining ecosystems, managing forests and manufacturing wood products; conducts basic and applied research on the nature and use of forests; and operates 14,000 acres of college forests.

Kaichang Li | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Materials Sciences:

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that packaging is becoming intelligent through flash systems?
23.05.2017 | Heraeus Noblelight GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>