Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oscillating Gel Acts Like Artificial Skin, Giving Robots Potential Ability to “Feel”

30.03.2012
Pitt and MIT researchers accomplish first demonstration of oscillating gels that can be “revived” by mechanical pressure

Sooner than later, robots may have the ability to “feel.” In a paper published online March 26 in Advanced Functional Materials, a team of researchers from the University of Pittsburgh and the Massachusetts Institute of Technology (MIT) demonstrated that a nonoscillating gel can be resuscitated in a fashion similar to a medical cardiopulmonary resuscitation.

These findings pave the way for the development of a wide range of new applications that sense mechanical stimuli and respond chemically—a natural phenomenon few materials have been able to mimic.

A team of researchers at Pitt made predictions regarding the behavior of Belousov-Zhabotinsky (BZ) gel, a material that was first fabricated in the late 1990s and shown to pulsate in the absence of any external stimuli. In fact, under certain conditions, the gel sitting in a petri dish resembles a beating heart.

Along with her colleagues, Anna Balazs, Distinguished Professor of Chemical and Petroleum Engineering in Pitt’s Swanson School of Engineering, predicted that BZ gel not previously oscillating could be re-excited by mechanical pressure. The prediction was actualized by MIT researchers, who proved that chemical oscillations can be triggered by mechanically compressing the BZ gel beyond a critical stress. A video from the MIT group showing this unique behavior can be accessed at http://vvgroup.scripts.mit.edu/WP/?p=1078.

“Think of it like human skin, which can provide signals to the brain that something on the body is deformed or hurt,” says Balazs. “This gel has numerous far-reaching applications, such as artificial skin that could be sensory—a holy grail in robotics.”

Balazs says the gel could serve as a small-scale pressure sensor for different vehicles or instruments to see whether they’d been bumped, providing diagnostics for the impact on surfaces. This sort of development—and materials like BZ gel—are things Balazs has been interested in since childhood.

“My mother would often tease me when I was young, saying I was like a mimosa plant— shy and bashful,” says Balazs. “As a result, I became fascinated with the plant and its unique hide-and-seek qualities—the plant leaves fold inward and droop when touched or shaken, reopening just minutes later. I knew there had to be a scientific application regarding touch, which led me to studies like this in mechanical and chemical energy.”

Also on Balazs’s research team were Olga Kuksenok, research associate professor, and Victor Yashin, visiting research assistant professor, both in Pitt’s Swanson School of Engineering. At MIT, the work was performed by Krystyn Van Vliet, Paul M. Cook Career Development Associate Professor of Material Sciences and Engineering, and graduate student Irene Chen. (Group Web site: http://vvgroup.scripts.mit.edu/WP/).

Funding for this research was provided by the National Science Foundation and the U.S. Army.

B. Rose Huber | EurekAlert!
Further information:
http://www.pitt.edu

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>