Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


ORNL study reveals new characteristics of complex oxide surfaces


A novel combination of microscopy and data processing has given researchers at the Department of Energy’s Oak Ridge National Laboratory an unprecedented look at the surface of a material known for its unusual physical and electrochemical properties.

The research team led by ORNL’s Zheng Gai examined how oxygen affects the surface of a perovskite manganite, a complex material that exhibits dramatic magnetic and electronic behavior. The new avenue to understand surface behavior could benefit researchers who are interested in using a wide range of correlated oxide materials for applications such as solid fuel cells or oxygen sensors.

An Oak Ridge National Laboratory study combined microscopy and data processing to provide an unprecedented look at the surface of a magnanite material known for its unusual properties. The resulting “distortion maps” (right) brought into view structural areas called domains that were not easily identified in the raw images (left).

“Surface properties are key for any sensitive application, because the surface controls the interaction with the outside world,” said coauthor Art Baddorf.

The team’s results, published in Nature Communications, underscore why the materials are called “strongly correlated:” Because the chemical and physical functionalities are coupled, any minor change can influence the entire system.

“It’s like the material has many knobs, and if you turn one, all the properties change,” Gai said. “You turn a different knob and the whole thing changes again. It turns out the surface is another knob -- you can use it to change the properties.”

The researchers used high-resolution scanning tunneling microscopy to generate images of the manganite surface -- down to the level of 30 picometers. A picometer is one trillionth of a meter. They then processed the imaging data to determine the position of each atom and calculate the angles between the atoms.

“Knowing where the atoms are positioned shows how they are interacting,” Baddorf said.

The resulting “distortion maps” brought into view structural areas called domains that were not easily identified in the raw images. The maps clearly showed how the presence of oxygen atoms forced the atoms into a checkerboard pattern known as a Jahn-Teller distortion. Gai says the team’s study is the first time the phenomenon has been observed on a material’s surface.

“The oxygen totally changes the surface energy,” Gai said. “Once you introduce oxygen, the electrons don’t like to form a straight line; they zigzag to get to a lower energy state. This distortion is a very common concept in bulk materials, but nobody has been able to show this effect on the surface before.”

The study is published as “Chemically induced Jahn–Teller ordering on manganite surfaces.” Coauthors are ORNL’s Wenzhi Lin, Paul Snijders, Thomas Ward, J. Shen, Stephen Jesse, Sergei Kalinin, and Arthur Baddorf; University of Nebraska’s J.D. Burton and Evgeny Tsymbal; and IHI Corporation’s K. Fuchigami.

This research was conducted in part at the Center for Nanophase Materials Sciences, a DOE Office of Science user facility. The DOE’s Office of Science supported the research.  Work at the University of Nebraska-Lincoln was supported by the National Science Foundation.

UT-Battelle manages ORNL for the Department of Energy's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

Morgan McCorkle | Eurek Alert!
Further information:

Further reports about: Laboratory Materials Sciences ORNL electrons images materials metal oxide surfaces

More articles from Materials Sciences:

nachricht Coming to a monitor near you: A defect-free, molecule-thick film
27.11.2015 | University of California - Berkeley

nachricht Controlling Electromagnetic Radiation by Graphene
27.11.2015 | Universität Augsburg

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How do Landslides control the weathering of rocks?

Chemical weathering in mountains depends on the process of erosion.

Chemical weathering of rocks over geological time scales is an important control on the stability of the climate. This weathering is, in turn, highly dependent...

Im Focus: How Cells in the Developing Ear ‘Practice’ Hearing

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular chain of events that enables the cells to make “sounds” on their own, essentially “practicing” their ability to process sounds in the world around them.

The researchers, who describe their experiments in the Dec. 3 edition of the journal Cell, show how hair cells in the inner ear can be activated in the absence...

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

All Focus news of the innovation-report >>>



Event News

European Geosciences Union meeting: Media registration now open (EGU 2016 media advisory 1)

01.12.2015 | Event News

Urbanisation and migration from rural areas challenging agriculture in Eastern Europe

30.11.2015 | Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Latest News

USGS projects large loss of Alaska permafrost by 2100

01.12.2015 | Earth Sciences

New study reveals what's behind a tarantula's blue hue

01.12.2015 | Life Sciences

Climate Can Grind Mountains Faster Than They Can Be Rebuilt

01.12.2015 | Earth Sciences

More VideoLinks >>>