Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL study reveals new characteristics of complex oxide surfaces

25.07.2014

A novel combination of microscopy and data processing has given researchers at the Department of Energy’s Oak Ridge National Laboratory an unprecedented look at the surface of a material known for its unusual physical and electrochemical properties.

The research team led by ORNL’s Zheng Gai examined how oxygen affects the surface of a perovskite manganite, a complex material that exhibits dramatic magnetic and electronic behavior. The new avenue to understand surface behavior could benefit researchers who are interested in using a wide range of correlated oxide materials for applications such as solid fuel cells or oxygen sensors.


An Oak Ridge National Laboratory study combined microscopy and data processing to provide an unprecedented look at the surface of a magnanite material known for its unusual properties. The resulting “distortion maps” (right) brought into view structural areas called domains that were not easily identified in the raw images (left).

“Surface properties are key for any sensitive application, because the surface controls the interaction with the outside world,” said coauthor Art Baddorf.

The team’s results, published in Nature Communications, underscore why the materials are called “strongly correlated:” Because the chemical and physical functionalities are coupled, any minor change can influence the entire system.

“It’s like the material has many knobs, and if you turn one, all the properties change,” Gai said. “You turn a different knob and the whole thing changes again. It turns out the surface is another knob -- you can use it to change the properties.”

The researchers used high-resolution scanning tunneling microscopy to generate images of the manganite surface -- down to the level of 30 picometers. A picometer is one trillionth of a meter. They then processed the imaging data to determine the position of each atom and calculate the angles between the atoms.

“Knowing where the atoms are positioned shows how they are interacting,” Baddorf said.

The resulting “distortion maps” brought into view structural areas called domains that were not easily identified in the raw images. The maps clearly showed how the presence of oxygen atoms forced the atoms into a checkerboard pattern known as a Jahn-Teller distortion. Gai says the team’s study is the first time the phenomenon has been observed on a material’s surface.

“The oxygen totally changes the surface energy,” Gai said. “Once you introduce oxygen, the electrons don’t like to form a straight line; they zigzag to get to a lower energy state. This distortion is a very common concept in bulk materials, but nobody has been able to show this effect on the surface before.”

The study is published as “Chemically induced Jahn–Teller ordering on manganite surfaces.” Coauthors are ORNL’s Wenzhi Lin, Paul Snijders, Thomas Ward, J. Shen, Stephen Jesse, Sergei Kalinin, and Arthur Baddorf; University of Nebraska’s J.D. Burton and Evgeny Tsymbal; and IHI Corporation’s K. Fuchigami.

This research was conducted in part at the Center for Nanophase Materials Sciences, a DOE Office of Science user facility. The DOE’s Office of Science supported the research.  Work at the University of Nebraska-Lincoln was supported by the National Science Foundation.

UT-Battelle manages ORNL for the Department of Energy's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/.

Morgan McCorkle | Eurek Alert!
Further information:
http://www.ornl.gov/ornl/news/news-releases/2014/ornl-study-reveals-new-characteristics-of-complex-oxide-surfaces-

Further reports about: Laboratory Materials Sciences ORNL electrons images materials metal oxide surfaces

More articles from Materials Sciences:

nachricht Strength and ductility for alloys
27.05.2016 | Max-Planck-Institut für Eisenforschung GmbH

nachricht Computational high-throughput screening finds hard magnets containing less rare earth elements
25.05.2016 | Fraunhofer-Institut für Werkstoffmechanik IWM

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Fast, stretchy circuits could yield new wave of wearable electronics

30.05.2016 | Power and Electrical Engineering

Roadmap for better protection of Borneo’s cats and small carnivores

30.05.2016 | Ecology, The Environment and Conservation

Rosetta’s comet contains ingredients for life

30.05.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>