Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL study reveals new characteristics of complex oxide surfaces

25.07.2014

A novel combination of microscopy and data processing has given researchers at the Department of Energy’s Oak Ridge National Laboratory an unprecedented look at the surface of a material known for its unusual physical and electrochemical properties.

The research team led by ORNL’s Zheng Gai examined how oxygen affects the surface of a perovskite manganite, a complex material that exhibits dramatic magnetic and electronic behavior. The new avenue to understand surface behavior could benefit researchers who are interested in using a wide range of correlated oxide materials for applications such as solid fuel cells or oxygen sensors.


An Oak Ridge National Laboratory study combined microscopy and data processing to provide an unprecedented look at the surface of a magnanite material known for its unusual properties. The resulting “distortion maps” (right) brought into view structural areas called domains that were not easily identified in the raw images (left).

“Surface properties are key for any sensitive application, because the surface controls the interaction with the outside world,” said coauthor Art Baddorf.

The team’s results, published in Nature Communications, underscore why the materials are called “strongly correlated:” Because the chemical and physical functionalities are coupled, any minor change can influence the entire system.

“It’s like the material has many knobs, and if you turn one, all the properties change,” Gai said. “You turn a different knob and the whole thing changes again. It turns out the surface is another knob -- you can use it to change the properties.”

The researchers used high-resolution scanning tunneling microscopy to generate images of the manganite surface -- down to the level of 30 picometers. A picometer is one trillionth of a meter. They then processed the imaging data to determine the position of each atom and calculate the angles between the atoms.

“Knowing where the atoms are positioned shows how they are interacting,” Baddorf said.

The resulting “distortion maps” brought into view structural areas called domains that were not easily identified in the raw images. The maps clearly showed how the presence of oxygen atoms forced the atoms into a checkerboard pattern known as a Jahn-Teller distortion. Gai says the team’s study is the first time the phenomenon has been observed on a material’s surface.

“The oxygen totally changes the surface energy,” Gai said. “Once you introduce oxygen, the electrons don’t like to form a straight line; they zigzag to get to a lower energy state. This distortion is a very common concept in bulk materials, but nobody has been able to show this effect on the surface before.”

The study is published as “Chemically induced Jahn–Teller ordering on manganite surfaces.” Coauthors are ORNL’s Wenzhi Lin, Paul Snijders, Thomas Ward, J. Shen, Stephen Jesse, Sergei Kalinin, and Arthur Baddorf; University of Nebraska’s J.D. Burton and Evgeny Tsymbal; and IHI Corporation’s K. Fuchigami.

This research was conducted in part at the Center for Nanophase Materials Sciences, a DOE Office of Science user facility. The DOE’s Office of Science supported the research.  Work at the University of Nebraska-Lincoln was supported by the National Science Foundation.

UT-Battelle manages ORNL for the Department of Energy's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/.

Morgan McCorkle | Eurek Alert!
Further information:
http://www.ornl.gov/ornl/news/news-releases/2014/ornl-study-reveals-new-characteristics-of-complex-oxide-surfaces-

Further reports about: Laboratory Materials Sciences ORNL electrons images materials metal oxide surfaces

More articles from Materials Sciences:

nachricht Combining the elements palladium and ruthenium for industry
22.09.2016 | National Institute for Materials Science

nachricht Defects at the spinterface disrupt transmission
21.09.2016 | Eberhard Karls Universität Tübingen

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Custom-tailored strategy against glioblastomas

26.09.2016 | Health and Medicine

Cooling buildings with solar heat

26.09.2016 | Power and Electrical Engineering

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>