Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL study confirms magnetic properties of silicon nano-ribbons

18.10.2012
Nano-ribbons of silicon configured so the atoms resemble chicken wire could hold the key to ultrahigh density data storage and information processing systems of the future.

This was a key finding of a team of scientists led by Paul Snijders of the Department of Energy's Oak Ridge National Laboratory. The researchers used scanning tunneling microscopy and spectroscopy to validate first principle calculations - or models - that for years had predicted this outcome.

The discovery, detailed in New Journal of Physics, validates this theory and could move scientists closer to their long-term goal of cost-effectively creating magnetism in non-magnetic materials.

"While scientists have spent a lot of time studying silicon because it is the workhorse for current information technologies, for the first time we were able to clearly establish that the edges of nano-ribbons feature magnetic silicon atoms," said Snijders, a member of the Materials Science and Technology Division.

The surprise is that while bulk silicon is non-magnetic, the edges of nano-ribbons of this material are magnetic. Snijders and colleagues at ORNL, Argonne National Laboratory, the University of Wisconsin and Naval Research Laboratory showed that the electron spins are ordered anti-ferromagnetically, which means they point up and down alternatingly. Configured this way, the up and down spin-polarized atoms serve as effective substitutes for conventional zeros and ones common to electron, or charge, current.

"By exploiting the electron spins arising from intrinsic broken bonds at gold-stabilized silicon surfaces, we were able to replace conventional electronically charged zeros and ones with spins pointing up and down," Snijders said.

This discovery provides a new avenue to study low-dimensional magnetism, the researchers noted. Most importantly, such stepped silicon-gold surfaces provide an atomically precise template for single-spin devices at the ultimate limit of high-density data storage and processing.

"In the quest for smaller and less expensive magnets, electro-motors, electronics and storage devices, creating magnetism in otherwise non-magnetic materials could have far-reaching implications," Snijders said.

The paper is available on line at http://iopscience.iop.org/1367-2630/14/10/103004. This research was funded by DOE's Office of Science, the National Science Foundation and the Office of Naval Research.

This work was supported by the Center for Nanophase Materials Sciences at ORNL. CNMS is one of the five DOE Nanoscale Science Research Centers supported by the DOE Office of Science, premier national user facilities for interdisciplinary research at the nanoscale. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos national laboratories. For more information about the DOE NSRCs, please visit http://science.energy.gov/bes/suf/user-facilities/nanoscale-science-research-centers/

UT-Battelle manages ORNL for the Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/

Ron Walli | EurekAlert!
Further information:
http://science.energy.gov/
http://www.ornl.gov

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>