Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


ORNL scientists uncover clues to role of magnetism in iron-based superconductors


New measurements of atomic-scale magnetic behavior in iron-based superconductors by researchers at the Department of Energy’s Oak Ridge National Laboratory and Vanderbilt University are challenging conventional wisdom about superconductivity and magnetism.

The study published in Advanced Materials provides experimental evidence that local magnetic fluctuations can influence the performance of iron-based superconductors, which transmit electric current without resistance at relatively high temperatures.

Oak Ridge National Laboratory scientists used scanning transmission electron microscopy to measure atomic-scale magnetic behavior in several families of iron-based superconductors.

“In the past, everyone thought that magnetism and superconductivity could not coexist,” said ORNL’s Claudia Cantoni, the study’s first author. “The whole idea of superconductors is that they expel magnetic fields. But in reality things are more complicated.”

Superconductivity is strongly suppressed by the presence of long-range magnetism -- where atoms align their magnetic moments over large volumes -- but the ORNL study suggests that rapid fluctuations of local magnetic moments have a different effect. Not only does localized magnetism exist, but it is also correlated with a high critical temperature, the point at which the material becomes superconducting.

“One would think for superconductivity to exist, not only the long-range order but also the local magnetic moments would have to die out,” Cantoni said. “We saw instead that if one takes a fast ‘picture’ of the local moment, it is actually at its maximum where superconductivity is at its maximum. This indicates that a large local moment is good for superconductivity.”

The ORNL-led team used a combination of scanning transmission electron microscopy and electron energy loss spectroscopy to characterize the magnetic properties of individual atoms. Other experimental techniques have not been able to capture information on the local magnetic moments in sufficient detail.

“This kind of measurement of magnetic moments is usually done with more bulk-sensitive techniques, which means they look at the average of the material,” Cantoni said. “When you use the average, you might not get the right answer.”

The team’s four-year comprehensive study analyzed compounds across several families of iron-based superconductors, revealing universal trends among the different samples. The researchers were able to figure out the total number and distribution of electrons in atomic energy levels that determine the local magnetic moments.

“We find this number remains constant for all the members of this family,” Cantoni said. “The number of electrons doesn’t change -- what changes are the positions and distribution of electrons in different levels. This is why the magnetic moment differs across families.”  

The ORNL scientists also say the technique they demonstrated on iron-based superconductors could be useful in studies of other technologically interesting materials in fields such as electronics and data storage.

“Electron microscopy has long been an imaging technique that gives you a lot of crystal structure information; now we’re trying to go beyond to get the electronic structure,” Cantoni said. “Not only do we want to know what atoms are where, but what the electrons in those atoms are doing.”

The study’s coauthors are ORNL’s Claudia Cantoni, Jonathan Mitchell, Andrew May, Michael McGuire, Juan-Carlos Idrobo, Tom Berlijn, Matthew Chisholm, Elbio Dagotto, Wu Zhou, Athena Safa-Sefat and Brian Sales, and the University of Tennessee’s Stephen Pennycook. The research is published as “Orbital occupancy and charge doping in iron-based superconductors.”

This research was conducted in part at the Center for Nanophase Materials Sciences, a DOE Office of Science User Facility. The research at ORNL was supported by the DOE’s Office of Science. Collaborators Idrobo and Zhou at Vanderbilt University were supported by the National Science Foundation.

UT-Battelle manages ORNL for the Department of Energy's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

Morgan McCorkle | Eurek Alert!

Further reports about: Laboratory ORNL Oak Science clues electrons large levels magnetism structure superconductivity superconductors technique techniques

More articles from Materials Sciences:

nachricht Researchers demonstrate existence of new form of electronic matter
15.03.2018 | University of Illinois at Urbana-Champaign

nachricht Boron can form a purely honeycomb, graphene-like 2-D structure
15.03.2018 | Science China Press

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>