Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL scientists uncover clues to role of magnetism in iron-based superconductors

22.08.2014

New measurements of atomic-scale magnetic behavior in iron-based superconductors by researchers at the Department of Energy’s Oak Ridge National Laboratory and Vanderbilt University are challenging conventional wisdom about superconductivity and magnetism.

The study published in Advanced Materials provides experimental evidence that local magnetic fluctuations can influence the performance of iron-based superconductors, which transmit electric current without resistance at relatively high temperatures.


Oak Ridge National Laboratory scientists used scanning transmission electron microscopy to measure atomic-scale magnetic behavior in several families of iron-based superconductors.

“In the past, everyone thought that magnetism and superconductivity could not coexist,” said ORNL’s Claudia Cantoni, the study’s first author. “The whole idea of superconductors is that they expel magnetic fields. But in reality things are more complicated.”

Superconductivity is strongly suppressed by the presence of long-range magnetism -- where atoms align their magnetic moments over large volumes -- but the ORNL study suggests that rapid fluctuations of local magnetic moments have a different effect. Not only does localized magnetism exist, but it is also correlated with a high critical temperature, the point at which the material becomes superconducting.

“One would think for superconductivity to exist, not only the long-range order but also the local magnetic moments would have to die out,” Cantoni said. “We saw instead that if one takes a fast ‘picture’ of the local moment, it is actually at its maximum where superconductivity is at its maximum. This indicates that a large local moment is good for superconductivity.”

The ORNL-led team used a combination of scanning transmission electron microscopy and electron energy loss spectroscopy to characterize the magnetic properties of individual atoms. Other experimental techniques have not been able to capture information on the local magnetic moments in sufficient detail.

“This kind of measurement of magnetic moments is usually done with more bulk-sensitive techniques, which means they look at the average of the material,” Cantoni said. “When you use the average, you might not get the right answer.”

The team’s four-year comprehensive study analyzed compounds across several families of iron-based superconductors, revealing universal trends among the different samples. The researchers were able to figure out the total number and distribution of electrons in atomic energy levels that determine the local magnetic moments.

“We find this number remains constant for all the members of this family,” Cantoni said. “The number of electrons doesn’t change -- what changes are the positions and distribution of electrons in different levels. This is why the magnetic moment differs across families.”  

The ORNL scientists also say the technique they demonstrated on iron-based superconductors could be useful in studies of other technologically interesting materials in fields such as electronics and data storage.

“Electron microscopy has long been an imaging technique that gives you a lot of crystal structure information; now we’re trying to go beyond to get the electronic structure,” Cantoni said. “Not only do we want to know what atoms are where, but what the electrons in those atoms are doing.”

The study’s coauthors are ORNL’s Claudia Cantoni, Jonathan Mitchell, Andrew May, Michael McGuire, Juan-Carlos Idrobo, Tom Berlijn, Matthew Chisholm, Elbio Dagotto, Wu Zhou, Athena Safa-Sefat and Brian Sales, and the University of Tennessee’s Stephen Pennycook. The research is published as “Orbital occupancy and charge doping in iron-based superconductors.”

This research was conducted in part at the Center for Nanophase Materials Sciences, a DOE Office of Science User Facility. The research at ORNL was supported by the DOE’s Office of Science. Collaborators Idrobo and Zhou at Vanderbilt University were supported by the National Science Foundation.

UT-Battelle manages ORNL for the Department of Energy's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/.

Morgan McCorkle | Eurek Alert!

Further reports about: Laboratory ORNL Oak Science clues electrons large levels magnetism structure superconductivity superconductors technique techniques

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>