Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL scientists crack materials mystery in vanadium dioxide

24.11.2010
A systematic study of phase changes in vanadium dioxide has solved a mystery that has puzzled scientists for decades, according to researchers at the Department of Energy's Oak Ridge National Laboratory.

Scientists have known that vanadium dioxide exhibits several competing phases when it acts as an insulator at lower temperatures. However, the exact nature of the phase behavior has not been understood since research began on vanadium dioxide in the early 1960s.

Alexander Tselev, a research associate from the University of Tennessee-Knoxville working with ORNL's Center for Nanophase Materials Sciences, in collaboration with Igor Luk'yanchuk from the University of Picardy in France used a condensed matter physics theory to explain the observed phase behaviors of vanadium dioxide, a material of significant technological interest for optics and electronics.

"We discovered that the competition between several phases is purely driven by the lattice symmetry," Tselev said. "We figured out that the metallic phase lattice of vanadium oxide can 'fold' in different ways while cooling, so what people observed was different types of its folding."

Vanadium dioxide is best known in the materials world for its speedy and abrupt phase transition that essentially transforms the material from a metal to an insulator. The phase change takes place at about 68 degrees Celsius.

"These features of electrical conductivity make vanadium dioxide an excellent candidate for numerous applications in optical, electronic and optoelectronic devices," Tselev said.

Devices that might take advantage of the unusual properties of VO2 include lasers, motion detectors and pressure detectors, which could benefit from the increased sensitivity provided by the property changes of vanadium dioxide. The material is already used in technologies such as infrared sensors.

Researchers said their theoretical work could help guide future experimental research in vanadium dioxide and ultimately aid the development of new technologies based on VO2.

"In physics, you always want to understand how the material ticks," said Sergei Kalinin, a senior scientist at the CNMS. "The thermodynamic theory will allow you to predict how the material will behave in different external conditions."

The results were published in the American Chemical Society's Nano Letters. The research team also included Ilia Ivanov, John Budai and Jonathan Tischler at ORNL and Evgheni Strelcov and Andrei Kolmakov at Southern Illinois University.

The team's theoretical research expands upon previous experimental ORNL studies with microwave imaging that demonstrated how strain and changes of crystal lattice symmetry can produce thin conductive wires in nanoscale vanadium dioxide samples.

This research was supported in part by the Department of Energy's Office of Science and by the National Science Foundation. Researchers also used instrumentation at the Office of Science-supported Center for Nanophase Materials Sciences and Advanced Photon Source User Facilities at Oak Ridge and Argonne national laboratories, respectively.

CNMS is one of the five DOE Nanoscale Science Research Centers, premier national user facilities for interdisciplinary research at the nanoscale supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit http://nano.energy.gov.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science.

NOTE TO EDITORS: You may read other press releases from Oak Ridge National Laboratory or learn more about the lab at http://www.ornl.gov/news. Additional information about ORNL is available at the sites below:

Twitter - http://twitter.com/oakridgelabnews

RSS Feeds - http://www.ornl.gov/ornlhome/rss_feeds.shtml

Flickr - http://www.flickr.com/photos/oakridgelab

YouTube - http://www.youtube.com/user/OakRidgeNationalLab

LinkedIn - http://www.linkedin.com/companies/oak-ridge-national-laboratory

Facebook - http://www.facebook.com/Oak.Ridge.National.Laboratory

Morgan McCorkle | EurekAlert!
Further information:
http://www.ornl.gov

Further reports about: Laboratory Materials Science NSRCs Nanophase ORNL Science TV VO2 vanadium dioxide

More articles from Materials Sciences:

nachricht Fraunhofer IFAM expands its R&D work on Coatings for protection against corrosion and marine growth
27.02.2017 | Fraunhofer IFAM

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Safe glide at total engine failure with ELA-inside

27.02.2017 | Information Technology

Fraunhofer IFAM expands its R&D work on Coatings for protection against corrosion and marine growth

27.02.2017 | Materials Sciences

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>