Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL Researchers Make First Observation of Atoms Moving Inside Bulk Material

14.10.2014

Researchers at the Department of Energy's Oak Ridge National Laboratory have obtained the first direct observations of atomic diffusion inside a bulk material. The research, which could be used to give unprecedented insight into the lifespan and properties of new materials, is published in the journal Physical Review Letters (06 October 2014, DOI: 10.1103/PhysRevLett.113.155501).

“This is the first time that anyone has directly imaged single dopant atoms moving around inside a material,” said Rohan Mishra of Vanderbilt University who is also a visiting scientist in ORNL’s Materials Science and Technology Division.


ORNL

Selected frames from a sequence of scanning transmission electron microscope images showing the diffusion pathway of a Ce dopant (the bright atom highlighted with a white arrow) as it moves inside a bulk AlN crystal. The final frame overlays the Ce pathway on the Z-contrast image obtained by averaging each frame.

Semiconductors, which form the basis of modern electronics, are “doped” by adding a small number of impure atoms to tune their properties for specific applications. The study of the dopant atoms and how they move or “diffuse” inside a host lattice is a fundamental issue in materials research.

Traditionally, diffusion of atoms has been studied through indirect macroscopic methods or through theoretical calculations. Diffusion of single atoms has previously been directly observed only on the surface of materials.

The experiment also allowed the researchers to test a surprising prediction: Theory-based calculations for dopant motion in aluminum nitride predicted faster diffusion for cerium atoms than for manganese atoms. This prediction is surprising as cerium atoms are larger than manganese atoms.

“It’s completely counterintuitive that a bigger, heavier atom would move faster than a smaller, lighter atom,” said the Material Science and Technology Division’s Andrew Lupini, a coauthor of the paper.

In the study, the researchers used a scanning transmission electron microscope to observe the diffusion processes of cerium and manganese dopant atoms. The images they captured showed that the larger cerium atoms readily diffused through the material, while the smaller manganese atoms remained fixed in place.

The team’s work could be directly applied in basic material design and technologies such as energy-saving LED lights where dopants can affect color and atom movement can determine the failure modes.

“Diffusion governs how dopants get inside a material and how they move,” said Lupini. “Our study gives a strategy for choosing which dopants will lead to a longer device lifetime.”

See videos of manganese and cerium atom dopant jumps.
This research was conducted in part at ORNL and Lawrence Berkeley National Laboratory’s National Energy Research Scientific Computing Center, a DOE Office of Science User Facility.

The study was funded by the DOE Office of Science, the Australian Research Council, Vanderbilt University and the Japan Society for the Promotion of Science Postdoctoral Fellowship for research abroad.

The project’s authors include Ryo Ishikawa of Oak Ridge National Laboratory and the University of Tokyo; Scott Findlay of Monash University; Takashi Taniguchi of the National Institute for Materials Science; Sokrates Pantelides of Oak Ridge National Laboratory and Vanderbilt University; and Stephen Pennycook of the University of Tennessee.

UT-Battelle manages ORNL for the Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/.

Contact Information

Chris Samoray
Oak Ridge National Laboratory
865-241-0709; samoraycr@ornl.gov

Chris Samoray | newswise

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>