Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL Researchers Make First Observation of Atoms Moving Inside Bulk Material

14.10.2014

Researchers at the Department of Energy's Oak Ridge National Laboratory have obtained the first direct observations of atomic diffusion inside a bulk material. The research, which could be used to give unprecedented insight into the lifespan and properties of new materials, is published in the journal Physical Review Letters (06 October 2014, DOI: 10.1103/PhysRevLett.113.155501).

“This is the first time that anyone has directly imaged single dopant atoms moving around inside a material,” said Rohan Mishra of Vanderbilt University who is also a visiting scientist in ORNL’s Materials Science and Technology Division.


ORNL

Selected frames from a sequence of scanning transmission electron microscope images showing the diffusion pathway of a Ce dopant (the bright atom highlighted with a white arrow) as it moves inside a bulk AlN crystal. The final frame overlays the Ce pathway on the Z-contrast image obtained by averaging each frame.

Semiconductors, which form the basis of modern electronics, are “doped” by adding a small number of impure atoms to tune their properties for specific applications. The study of the dopant atoms and how they move or “diffuse” inside a host lattice is a fundamental issue in materials research.

Traditionally, diffusion of atoms has been studied through indirect macroscopic methods or through theoretical calculations. Diffusion of single atoms has previously been directly observed only on the surface of materials.

The experiment also allowed the researchers to test a surprising prediction: Theory-based calculations for dopant motion in aluminum nitride predicted faster diffusion for cerium atoms than for manganese atoms. This prediction is surprising as cerium atoms are larger than manganese atoms.

“It’s completely counterintuitive that a bigger, heavier atom would move faster than a smaller, lighter atom,” said the Material Science and Technology Division’s Andrew Lupini, a coauthor of the paper.

In the study, the researchers used a scanning transmission electron microscope to observe the diffusion processes of cerium and manganese dopant atoms. The images they captured showed that the larger cerium atoms readily diffused through the material, while the smaller manganese atoms remained fixed in place.

The team’s work could be directly applied in basic material design and technologies such as energy-saving LED lights where dopants can affect color and atom movement can determine the failure modes.

“Diffusion governs how dopants get inside a material and how they move,” said Lupini. “Our study gives a strategy for choosing which dopants will lead to a longer device lifetime.”

See videos of manganese and cerium atom dopant jumps.
This research was conducted in part at ORNL and Lawrence Berkeley National Laboratory’s National Energy Research Scientific Computing Center, a DOE Office of Science User Facility.

The study was funded by the DOE Office of Science, the Australian Research Council, Vanderbilt University and the Japan Society for the Promotion of Science Postdoctoral Fellowship for research abroad.

The project’s authors include Ryo Ishikawa of Oak Ridge National Laboratory and the University of Tokyo; Scott Findlay of Monash University; Takashi Taniguchi of the National Institute for Materials Science; Sokrates Pantelides of Oak Ridge National Laboratory and Vanderbilt University; and Stephen Pennycook of the University of Tennessee.

UT-Battelle manages ORNL for the Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/.

Contact Information

Chris Samoray
Oak Ridge National Laboratory
865-241-0709; samoraycr@ornl.gov

Chris Samoray | newswise

More articles from Materials Sciences:

nachricht Researchers printed graphene-like materials with inkjet
18.08.2017 | Aalto University

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>