Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


ORNL process converts polyethylene into carbon fiber

Common material such as polyethylene used in plastic bags could be turned into something far more valuable through a process being developed at the Department of Energy's Oak Ridge National Laboratory.

In a paper published in Advanced Materials, a team led by Amit Naskar of the Materials Science and Technology Division outlined a method that allows not only for production of carbon fiber but also the ability to tailor the final product to specific applications.

Carbon fibers having unique surface geometries, from circular to hollow gear-shaped, are produced from polyethylene using a versatile fabrication method. The resulting carbon fiber exhibits properties that are dependent on processing conditions, rendering them highly amenable to myriad applications.

"Our results represent what we believe will one day provide industry with a flexible technique for producing technologically innovative fibers in myriad configurations such as fiber bundle or non-woven mat assemblies," Naskar said.

Using a combination of multi-component fiber spinning and their sulfonation technique, Naskar and colleagues demonstrated that they can make polyethylene-base fibers with a customized surface contour and manipulate filament diameter down to the submicron scale. The patent-pending process also allows them to tune the porosity, making the material potentially useful for filtration, catalysis and electrochemical energy harvesting.

Naskar noted that the sulfonation process allows for great flexibility as the carbon fibers exhibit properties that are dictated by processing conditions. For this project, the researchers produced carbon fibers with unique cross-sectional geometry, from hollow circular to gear-shaped by using a multi-component melt extrusion-based fiber spinning method.

The possibilities are virtually endless, according to Naskar, who described the process.

"We dip the fiber bundle into an acid containing a chemical bath where it reacts and forms a black fiber that no longer will melt," Naskar said. "It is this sulfonation reaction that transforms the plastic fiber into an infusible form.

"At this stage, the plastic molecules bond, and with further heating cannot melt or flow. At very high temperatures, this fiber retains mostly carbon and all other elements volatize off in different gas or compound forms."

The researchers also noted that their discovery represents a success for DOE, which seeks advances in lightweight materials that can, among other things, help the U.S. auto industry design cars able to achieve more miles per gallon with no compromise in safety or comfort. And the raw material, which could come from grocery store plastic bags, carpet backing scraps and salvage, is abundant and inexpensive.

Other authors of the paper, titled "Patterned functional carbon fibers from polyethylene," are Marcus Hunt, Tomonori Saito and Rebecca Brown of ORNL and Amar Kumbhar of the University of North Carolina's Chapel Hill Analytical and Nanofabrication Laboratory. The paper is published on line here:

Funding was provided by DOE's Office of Energy Efficiency and Renewable Energy ( UT-Battelle manages ORNL for DOE's Office of Science, the single largest supporter of basic research in the physical sciences in the United States. The Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit

Ron Walli | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>