Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL new material possible boon for lithium ion batteries

09.09.2011
Batteries could get a boost from an Oak Ridge National Laboratory discovery that increases power, energy density and safety while dramatically reducing charge time.

A team led by Hansan Liu, Gilbert Brown and Parans Paranthaman of the Department of Energy lab's Chemical Sciences Division found that titanium dioxide creates a highly desirable material that increases surface area and features a fast charge-discharge capability for lithium ion batteries. Compared to conventional technologies, the differences in charge time and capacity are striking.

"We can charge our battery to 50 percent of full capacity in six minutes while the traditional graphite-based lithium ion battery would be just 10 percent charged at the same current," Liu said.

Compared to commercial lithium titanate material, the ORNL compound also boasts a higher capacity – 256 vs. 165 milliampere hour per gram – and a sloping discharge voltage that is good for controlling state of charge. This characteristic combined with the fact oxide materials are extremely safe and long-lasting alternatives to commercial graphite make it well-suited for hybrid electric vehicles and other high-power applications.

The results, recently published in Advanced Materials, could also have special significance for applications in stationary energy storage systems for solar and wind power, and for smart grids. The titanium dioxide with a bronze polymorph also has the advantage of being potentially inexpensive, according to Liu.

At the heart of the breakthrough is the novel architecture of titanium dioxide, named mesoporous TiO2-B microspheres, which features channels and pores that allow for unimpeded flow of ions with a capacitor-like mechanism. Consequently, a lithium ion battery that substitutes TiO2-B for the graphite electrode charges and discharges quickly.

"Theoretical studies have uncovered that this pseudocapacitive behavior originates from the unique sites and energetics of lithium absorption and diffusion in TiO2-B structure," the authors write in their paper, titled "Mesoporous TiO2-B Microspheres with Superior Rate Performance for Lithium Ion Batteries."

Paranthaman noted that the microsphere shape of the material allows for traditional electrode fabrication and creates compact electrode layers. He also observed, however, that the production process of this material is complex and involves many steps, so more research remains to determine whether it is scalable.

Other authors of the paper are Zhonghe Bi, Xiao-Guang Sun, Raymond Unocic and Sheng Dai. The research was supported by DOE's Office of Science, ORNL's Laboratory Directed Research and Development program, and ORNL's SHaRE User Facility, which is sponsored by Basic Energy Sciences.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science.

NOTE TO EDITORS: You may read other press releases from Oak Ridge National Laboratory or learn more about the lab at http://www.ornl.gov/news. Additional information about ORNL is available at the sites below:

Twitter - http://twitter.com/oakridgelabnews

RSS Feeds - http://www.ornl.gov/ornlhome/rss_feeds.shtml

Flickr - http://www.flickr.com/photos/oakridgelab

YouTube - http://www.youtube.com/user/OakRidgeNationalLab

LinkedIn - http://www.linkedin.com/companies/oak-ridge-national-laboratory

Facebook - http://www.facebook.com/Oak.Ridge.National.Laboratory

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov

Further reports about: battery Energy Science Laboratory ORNL Science TV electric vehicle

More articles from Materials Sciences:

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that packaging is becoming intelligent through flash systems?
23.05.2017 | Heraeus Noblelight GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

29.05.2017 | Physics and Astronomy

Strathclyde-led research develops world's highest gain high-power laser amplifier

29.05.2017 | Physics and Astronomy

A 3-D look at the 2015 El Niño

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>