Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL finding has materials scientists entering new territory

22.02.2012
Solar cells, light emitting diodes, displays and other electronic devices could get a bump in performance because of a discovery at the Department of Energy's Oak Ridge National Laboratory that establishes new boundaries for controlling band gaps.

While complex transition metal oxides have for years held great promise for a variety of information and energy applications, the challenge has been to devise a method to reduce band gaps of those insulators without compromising the material's useful physical properties.

The band gap is a major factor in determining electrical conductivity in a material and directly determines the upper wavelength limit of light absorption. Thus, achieving wide band gap tunability is highly desirable for developing opto-electronic devices and energy materials.

Using a layer-by-layer growth technique for which Ho Nyung Lee of ORNL earned the Presidential Early Career Award for Scientists and Engineers, Lee and colleagues have achieved a 30 percent reduction in the band gap of complex metal oxides. The findings are outlined in the journal Nature Communications.

"Our approach to tuning band gaps is based on atomic-scale growth control of complex oxide materials, yielding novel artificial materials that do not exist in nature," Lee said. "This 'epitaxy' technique can be used to design entirely new materials or to specifically modify the composition of thin-film crystals with sub-nanometer accuracy."

While band gap tuning has been widely successful for more conventional semiconductors, the 30 percent band gap reduction demonstrated with oxides easily surpasses previous accomplishments of 6 percent – or 0.2 electron volt – in this area and opens pathways to new approaches to controlling band gap in complex-oxide materials.

With this discovery, the potential exists for oxides with band gaps to be continuously controlled over 1 electron volt by site-specific alloying developed by the ORNL team. "Therefore," Lee said, "this work represents a major achievement using complex oxides that offer a number of advantages as they are very stable under extreme and severe environments."

ORNL's Michelle Buchanan, associate lab director for the Physical Sciences Directorate, expanded on Lee's sentiment. "This work exemplifies how basic research can provide technical breakthroughs that will result in vastly improved energy technologies," she said.

Other authors of the paper, titled "Wide band gap tunability in complex transition metal oxides by site-specific substitution," are Woo Seok Choi, Matthew Chisholm, David Singh, Taekjib Choi and Gerald Jellison of ORNL's Materials Science and Technology Division. A patent is pending for this technology.

The research was funded initially by the Laboratory Directed Research and Development program and later by the Department of Energy's Office of Science. Optical measurements were performed in part at the Center for Nanophase Materials Sciences, a DOE-BES user facility at ORNL.

UT-Battelle manages ORNL for the Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Materials Sciences:

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Treated carbon pulls radioactive elements from water
20.01.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>