Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL Discovers Amazing Electrical Properties in Polymers

26.09.2011
Crystals and ceramics pale when compared to a material researchers at Oak Ridge National Laboratory discovered that has 10 times their piezoelectric effect, making it suitable for perhaps hundreds of everyday uses.

ORNL’s Volker Urban and colleagues at Technical University Aachen in Germany noticed the reverse piezoelectric effect – defined as creating a mechanical strain by applying an electrical voltage -- while conducting fundamental research on polymers. At first they didn’t think about their observations in terms of classic piezoelectric materials, but then they became more curious.

“We thought about comparing the effects that we observed to more ‘classic’ piezoelectric materials and were surprised by how large the effects were by comparison,” said Urban, a member of the Department of Energy lab’s Neutron Scattering Science Division.

Until now, scientists did not believe that non-polar polymers were capable of exhibiting any piezoelectric effect, which occurs only in non-conductive materials. This research, however, shows up to 10 times the measured electro-active response as compared to the strongest known piezoelectric materials, typically crystals and ceramics.

“We observed this effect when two different polymer molecules like polystyrene and rubber are coupled as two blocks in a di-block copolymer,” Urban said.

Temperature-dependent studies of the molecular structure revealed an intricate balance of the repulsion between the unlike blocks and an elastic restoring force found in rubber. The electric field adds a third force that can shift the intricate balance, leading to the piezoelectric effect.

“The extraordinarily large response could revolutionize the field of electro-active devices,” said Urban, who listed a number of examples, including sensors, actuators, energy storage devices, power sources and biomedical devices. Urban also noted that additional potential uses are likely as word of this discovery gets out and additional research is performed.

“Ultimately, we’re not sure where this finding will take us, but at the very least it provides a fundamentally new perspective in polymer science,” Urban said.

The paper, titled “Piezoelectric Properties of Non-Polar Block Copolymers,” was published recently as the cover article in Advanced Materials. In addition to Urban, other authors are Markus Ruppel and Jimmy Mays of ORNL and Kristin Schmidt of the University of California at Santa Barbara. Authors from Aachen University are Christian Pester, Heiko Schoberth, Clemens Liedel, Patrick van Rijn, Kerstin Schindler, Stephanie Hiltl, Thomas Czubak and Alexander Böker.

Funding for this research was provided by DOE’s Office of Science and the German Science Foundation.

UT-Battelle manages ORNL for DOE’s Office of Science.

NOTE TO EDITORS: You may read other press releases from Oak Ridge National Laboratory or learn more about the lab at http://www.ornl.gov/news. Additional information about ORNL is available at the sites below:

Twitter - http://twitter.com/oakridgelabnews

RSS Feeds - http://www.ornl.gov/ornlhome/rss_feeds.shtml

Flickr - http://www.flickr.com/photos/oakridgelab

YouTube - http://www.youtube.com/user/OakRidgeNationalLab

LinkedIn - http://www.linkedin.com/companies/oak-ridge-national-laboratory

Facebook - http://www.facebook.com/Oak.Ridge.National.Laboratory

Ron Walli | Newswise Science News
Further information:
http://www.ornl.gov

Further reports about: Electrical Magnetic Properties ORNL piezoelectric materials

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>