Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


ORNL Develops Lignin-Based Thermoplastic Conversion Process

Turning lignin, a plant’s structural “glue” and a byproduct of the paper and pulp industry, into something considerably more valuable is driving a research effort headed by Amit Naskar of Oak Ridge National Laboratory.

In a cover article published in Green Chemistry, the research team describes a process that ultimately transforms the lignin byproduct into a thermoplastic – a polymer that becomes pliable above a specific temperature.

Researchers accomplished this by reconstructing larger lignin molecules either through a chemical reaction with formaldehyde or by washing with methanol. Through these simple chemical processes, they created a crosslinked rubber-like material that can also be processed like plastics.

“Our work addresses a pathway to utilize lignin as a sustainable, renewable resource material for synthesis of thermoplastics that are recyclable,” said Naskar, a member of the Department of Energy laboratory’s Material Science and Technology Division.

Instead of using nearly 50 million tons of lignin byproduct produced annually as a low-cost fuel to power paper and pulp mills, the material can be transformed into a lignin-derived high-value plastic. While the lignin byproduct in raw form is worth just pennies a pound as a fuel, the value can potentially increase by a factor of 10 or more after the conversion.

Naskar noted that earlier work on lignin-based plastics utilized material that was available from pulping industries and was a significantly degraded version of native lignin contained in biomass. This decomposition occurs during harsh chemical treatment of biomass.

“Here, however, we attempted to reconstruct larger lignin molecules by a simple crosslinking chemistry and then used it as a substitute for rigid phase in a formulation that behaves like crosslinked rubbers that can also be processed like plastics,” Naskar said.

Crosslinking involves building large lignin molecules by combining smaller molecules where formaldehyde helps to bridge the smaller units by chemical bonding. Naskar envisions the process leading to lower cost gaskets, window channels, irrigation hose, dashboards, car seat foam and a number of other plastic-like products.

A similar material can also be made from lignin produced in biorefineries. The paper, titled “Turning renewable resources into value-added polymer: development of lignin-based thermoplastic,” is available at

Other ORNL authors are Tomonori Saito, Rebecca Brown, Marcus Hunt, Deanna Pickel, Joseph Pickel, Jamie Messman, Frederick Baker and Martin Keller. The research was funded by the Laboratory Directed Research and Development program.

Part of the polymer characterization work was conducted at the Center for Nanophase Materials Sciences, one of the five DOE Nanoscale Science Research Centers supported by the DOE Office of Science, premier national user facilities for interdisciplinary research at the nanoscale. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos national laboratories. For more information about the DOE NSRCs, please visit

UT-Battelle manages ORNL for DOE’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit

Ron Walli | Newswise Science News
Further information:

More articles from Materials Sciences:

nachricht Custom sequences for polymers using visible light
22.03.2018 | Tokyo Metropolitan University

nachricht The search for dark matter widens
21.03.2018 | American Institute of Physics

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>