Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Organic Photovoltaic Cells of the Future


Researchers at University of Tsukuba and National Institute for Materials Science use charge formation efficiency to screen materials for future devices

Organic photovoltaic cells -- a type of solar cell that uses polymeric materials to capture sunlight -- show tremendous promise as energy conversion devices, thanks to key attributes such as flexibility and low-cost production.

Yutaka Moritomo/University of Tsukuba

Researchers develop method to screen organic materials for organic photovoltaic cells by charge formation efficiency.

But one giant hurdle holding back organic photovoltaic technologies have been the complexity of their power conversion processes, which involve separate charge formation and transport processes.

To maneuver around this problem, a team of researchers in Japan has developed a method to determine the absolute value of the charge formation efficiency. The secret of their method, as they report in Applied Physics Letters, is the combination of two types of spectroscopy.

The two types the team uses are photo-induced spectroscopy to determine the change in absorption after femtosecond photo-pulse excitation, and electrochemical spectroscopy to examine the absorption change due to charge injection.

"By qualitative analysis of the spectral change, we can deduce how many charges are produced by one photon -- its charge formation efficiency," said Professor Yutaka Moritomo, Institute of Materials Science at the University of Tsukuba.

Just how significant is this? It's a huge step forward, said Moritomo, and the team also discovered that the charge formation efficiency remains high (0.55) even at low temperatures (80 K).

"This was extremely surprising," Moritomo said, since the positive and negative charges are strongly bound in an organic photovoltaic device as an exciton -- a bound state of an electron and hole, which are attracted to each other by the electrostatic Coulomb force.

"Its charge formation was believed to be too difficult without a thermal activation process," explained Moritomo. "But our work shows that the charge formation process of an organic photovoltaic device is purely quantum mechanical, and any theoretical model should explain the high charge formation efficiency at low temperatures."

The team's work will enable the high-throughput screening of organic materials for new organic photovoltaic devices. "Organic materials have several requirements -- including high charge formation efficiency and high charge transport efficiency -- so our method can be used to quickly screen the materials by charge formation efficiency," Moritomo said.

Next for the team? "Now that we have a method to determine the key physical parameter, charge formation efficiency, we're exploring the interrelation between it and the nanoscale structure of the organic photovoltaic device to clarify the mechanism of the charge formation," noted Moritomo.

The article, "Effect of temperature on carrier formation efficiency in organic photovoltaic cells," is authored by Yutaka Moritomo, Kouhei Yonezawa and Takeshi Yasuda. It will appear in the journal Applied Physics Letters on August 19, 2014. After that date, it can be accessed at:

Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See:

Jason Socrates Bardi | newswise

Further reports about: AIP Cells Organic Photovoltaic materials physics processes spectroscopy temperatures

More articles from Materials Sciences:

nachricht The route to high temperature superconductivity goes through the flat land
23.11.2015 | Aalto University

nachricht Quantum spin could create unstoppable, one-dimensional electron waves
19.11.2015 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

Im Focus: Climate Change: Warm water is mixing up life in the Arctic

AWI researchers’ unique 15-year observation series reveals how sensitive marine ecosystems in polar regions are to change

The warming of arctic waters in the wake of climate change is likely to produce radical changes in the marine habitats of the High North. This is indicated by...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Harnessing a peptide holds promise for increasing crop yields without more fertilizer

25.11.2015 | Agricultural and Forestry Science

Earth's magnetic field is not about to flip

25.11.2015 | Earth Sciences

Tracking down the 'missing' carbon from the Martian atmosphere

25.11.2015 | Physics and Astronomy

More VideoLinks >>>