Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Organic Photovoltaic Cells of the Future

19.08.2014

Researchers at University of Tsukuba and National Institute for Materials Science use charge formation efficiency to screen materials for future devices

Organic photovoltaic cells -- a type of solar cell that uses polymeric materials to capture sunlight -- show tremendous promise as energy conversion devices, thanks to key attributes such as flexibility and low-cost production.


Yutaka Moritomo/University of Tsukuba

Researchers develop method to screen organic materials for organic photovoltaic cells by charge formation efficiency.

But one giant hurdle holding back organic photovoltaic technologies have been the complexity of their power conversion processes, which involve separate charge formation and transport processes.

To maneuver around this problem, a team of researchers in Japan has developed a method to determine the absolute value of the charge formation efficiency. The secret of their method, as they report in Applied Physics Letters, is the combination of two types of spectroscopy.

The two types the team uses are photo-induced spectroscopy to determine the change in absorption after femtosecond photo-pulse excitation, and electrochemical spectroscopy to examine the absorption change due to charge injection.

"By qualitative analysis of the spectral change, we can deduce how many charges are produced by one photon -- its charge formation efficiency," said Professor Yutaka Moritomo, Institute of Materials Science at the University of Tsukuba.

Just how significant is this? It's a huge step forward, said Moritomo, and the team also discovered that the charge formation efficiency remains high (0.55) even at low temperatures (80 K).

"This was extremely surprising," Moritomo said, since the positive and negative charges are strongly bound in an organic photovoltaic device as an exciton -- a bound state of an electron and hole, which are attracted to each other by the electrostatic Coulomb force.

"Its charge formation was believed to be too difficult without a thermal activation process," explained Moritomo. "But our work shows that the charge formation process of an organic photovoltaic device is purely quantum mechanical, and any theoretical model should explain the high charge formation efficiency at low temperatures."

The team's work will enable the high-throughput screening of organic materials for new organic photovoltaic devices. "Organic materials have several requirements -- including high charge formation efficiency and high charge transport efficiency -- so our method can be used to quickly screen the materials by charge formation efficiency," Moritomo said.

Next for the team? "Now that we have a method to determine the key physical parameter, charge formation efficiency, we're exploring the interrelation between it and the nanoscale structure of the organic photovoltaic device to clarify the mechanism of the charge formation," noted Moritomo.

The article, "Effect of temperature on carrier formation efficiency in organic photovoltaic cells," is authored by Yutaka Moritomo, Kouhei Yonezawa and Takeshi Yasuda. It will appear in the journal Applied Physics Letters on August 19, 2014. After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/apl/105/7/10.1063/1.4892611

ABOUT THE JOURNAL
Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See: http://apl.aip.org

Jason Socrates Bardi | newswise

Further reports about: AIP Cells Organic Photovoltaic materials physics processes spectroscopy temperatures

More articles from Materials Sciences:

nachricht An engineered surface unsticks sticky water droplets
01.09.2015 | Penn State

nachricht New material science research may advance tech tools
01.09.2015 | Louisiana State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

How to get rid of a satellite after its retirement

02.09.2015 | Physics and Astronomy

Expanded CNC programming software for operations planning, training and sales

02.09.2015 | Trade Fair News

Orang-utan females prefer cheek-padded males

02.09.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>