Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Organic electronics a two-way street, thanks to new plastic semiconductor

19.08.2009
Plastic that conducts electricity holds promise for cheaper, thinner and more flexible electronics.
This technology is already available in some gadgets -- the new Sony walkman that was introduced earlier this summer and the Microsoft Zune HD music player released last week both incorporate organic light-emitting electronic displays.

Until now, however, circuits built with organic materials have allowed only one type of charge to move through them. New research from the University of Washington makes charges flow both ways. The cover article in an upcoming issue of the journal Advanced Materials describes an approach to organic electronics that allows transport of both positive and negative charges.

"The organic semiconductors developed over the past 20 years have one important drawback. It's very difficult to get electrons to move through," said lead author Samson Jenekhe, a UW professor of chemical engineering. "By now having polymer semiconductors that can transmit both positive and negative charges, it broadens the available approaches. This would certainly change the way we do things."

Co-authors are Felix Kim, a doctoral student working with Jenekhe, and graduate student Xugang Guo and assistant professor Mark Watson at the University of Kentucky. The research was funded by the National Science Foundation, the Department of Energy and the Ford Foundation.

Silicon Valley got its name for a reason: Silicon is the "workhorse" of today's electronics industry, Jenekhe said. Silicon is fairly expensive and requires costly manufacturing, however, and because its rigid crystal form does not allow flexible devices.

About 30 years ago it was discovered that some plastics, or polymers, can conduct electricity. Since then researchers have been working to make them more efficient. Organic, or carbon-based, electronics are now used in such things as laptop computers, car audio systems and mp3 players.

A major drawback with existing organic semiconductors is most transmit only positive charges (called "holes" because the moving areas of positive charge are actually places where an electron is missing). In the last decade a few organic materials have been developed that can transport only electrons. But making a working organic circuit has meant carefully layering two complicated patterns on top of one another, one that transports electrons and another one that transports holes.

"Because current organic semiconductors have this limitation, the way they're currently used has to compensate for that, which has led to all kinds of complex processes and complications," Jenekhe said.

For more than a decade Jenekhe's lab has been a leader in developing organic semiconductors that can transmit electrons. Over the past few years the group has created polymers with a donor and an acceptor part, and carefully adjusted the strength of each one. In collaboration with Watson's lab, they have now developed an organic molecule that works to transport both positive and negative charges.

"What we have shown in this paper is that you don't have to use two separate organic semiconductors," Jenekhe said. "You can use one material to create electronic circuits."

The material would allow organic transistors and other information-processing devices to be built more simply, in a way that is more similar to how inorganic circuits are now made.

The group used the new material to build a transistor designed in the same way as a silicon model and the results show that both electrons and holes move through the device quickly.

The results represent the best performance ever seen in a single-component organic polymer semiconductor, Jenekhe said. Electrons moved five to eight times faster through the UW device than in any other such polymer transistor. A circuit, which consists of two or more integrated devices, generated a voltage gain two to five times greater than previously seen in a polymer circuit.

"We expect people to use this approach," Jenekhe said. "We've opened the way for people to know how to do it."

For more information, contact Jenekhe at 206-543-5525 or jenekhe@uw.edu

The paper is available at http://dx.doi.org/10.1002/adma.200901819

Hannah Hickey | EurekAlert!
Further information:
http://www.uw.edu

More articles from Materials Sciences:

nachricht Mat4Rail: EU Research Project on the Railway of the Future
23.02.2018 | Universität Bremen

nachricht Atomic structure of ultrasound material not what anyone expected
21.02.2018 | North Carolina State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>