Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Organic electronics a two-way street, thanks to new plastic semiconductor

19.08.2009
Plastic that conducts electricity holds promise for cheaper, thinner and more flexible electronics.
This technology is already available in some gadgets -- the new Sony walkman that was introduced earlier this summer and the Microsoft Zune HD music player released last week both incorporate organic light-emitting electronic displays.

Until now, however, circuits built with organic materials have allowed only one type of charge to move through them. New research from the University of Washington makes charges flow both ways. The cover article in an upcoming issue of the journal Advanced Materials describes an approach to organic electronics that allows transport of both positive and negative charges.

"The organic semiconductors developed over the past 20 years have one important drawback. It's very difficult to get electrons to move through," said lead author Samson Jenekhe, a UW professor of chemical engineering. "By now having polymer semiconductors that can transmit both positive and negative charges, it broadens the available approaches. This would certainly change the way we do things."

Co-authors are Felix Kim, a doctoral student working with Jenekhe, and graduate student Xugang Guo and assistant professor Mark Watson at the University of Kentucky. The research was funded by the National Science Foundation, the Department of Energy and the Ford Foundation.

Silicon Valley got its name for a reason: Silicon is the "workhorse" of today's electronics industry, Jenekhe said. Silicon is fairly expensive and requires costly manufacturing, however, and because its rigid crystal form does not allow flexible devices.

About 30 years ago it was discovered that some plastics, or polymers, can conduct electricity. Since then researchers have been working to make them more efficient. Organic, or carbon-based, electronics are now used in such things as laptop computers, car audio systems and mp3 players.

A major drawback with existing organic semiconductors is most transmit only positive charges (called "holes" because the moving areas of positive charge are actually places where an electron is missing). In the last decade a few organic materials have been developed that can transport only electrons. But making a working organic circuit has meant carefully layering two complicated patterns on top of one another, one that transports electrons and another one that transports holes.

"Because current organic semiconductors have this limitation, the way they're currently used has to compensate for that, which has led to all kinds of complex processes and complications," Jenekhe said.

For more than a decade Jenekhe's lab has been a leader in developing organic semiconductors that can transmit electrons. Over the past few years the group has created polymers with a donor and an acceptor part, and carefully adjusted the strength of each one. In collaboration with Watson's lab, they have now developed an organic molecule that works to transport both positive and negative charges.

"What we have shown in this paper is that you don't have to use two separate organic semiconductors," Jenekhe said. "You can use one material to create electronic circuits."

The material would allow organic transistors and other information-processing devices to be built more simply, in a way that is more similar to how inorganic circuits are now made.

The group used the new material to build a transistor designed in the same way as a silicon model and the results show that both electrons and holes move through the device quickly.

The results represent the best performance ever seen in a single-component organic polymer semiconductor, Jenekhe said. Electrons moved five to eight times faster through the UW device than in any other such polymer transistor. A circuit, which consists of two or more integrated devices, generated a voltage gain two to five times greater than previously seen in a polymer circuit.

"We expect people to use this approach," Jenekhe said. "We've opened the way for people to know how to do it."

For more information, contact Jenekhe at 206-543-5525 or jenekhe@uw.edu

The paper is available at http://dx.doi.org/10.1002/adma.200901819

Hannah Hickey | EurekAlert!
Further information:
http://www.uw.edu

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>