Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optoelectronic materials: Optimum solution

09.08.2011
Highly efficient organic light-emitting diodes are created by optimizing the molecular structure and device configuration

Organic light-emitting diodes (OLEDs) are seen as a promising replacement for the liquid-crystal displays (LCDs) used in many flat-screen televisions because they are cheaper to mass-produce. Zhikuan Chen at the A*STAR Institute of Materials Research and Engineering and co-workers have now shown how meticulous engineering of fluorescent molecules can dramatically increase OLED efficiency.

Conventional light-emitting diodes are made of inorganic crystals such as gallium arsenide. OLEDS, on the other hand, utilize carbon-based materials that can be made flexible. Today, OLED technology is commonly used to make large-area outdoor displays and wearable displays. However, further improvements in operation efficiency are required if OLEDs are to become truly competitive against the alternative options.

Chen and his co-workers have now reported blue light-emitting devices that reach an external quantum efficiency (EQE) of as high as 9.4%—almost double the classical upper limit of 5% for fluorescence-based OLEDs. “This improvement is important because higher efficiency means a lower driving voltage and thus lower power consumption and increased device lifetime,” explains Chen.

EQE is an important measure of LED operation as it determines what fraction of the charge carriers injected into the device are converted into photons that can be emitted. EQE takes into account the chance that the two types of charge carriers—negatively charged electrons and positively charged holes—recombine with each other, as well as the intrinsic probability that this results in the creation of a photon and the chance that this photon will escape from the device. Chen and his team have now used computer models to optimize these various processes.

Simulations enabled the researchers to find a structure for their active molecule—an oligofluorene—that best balanced charge carrier injection into the material and charge transport through it to enhance device emission efficiency. Further improvements were made by selecting the best emitting-layer thickness and by doping the emitter in an appropriate organic host material to minimize efficiency loss.

The OLEDs emitted blue light centered at a wavelength of 450 nanometers. Chen and his co-workers found that the high EQE was possible because the fraction of charge carriers that recombine without emitting light was negligible. Importantly, the light output was stable during operation, making it more amenable to use in practical situations. “Soon we hope to develop these materials further for lighting and displays applications,” says Chen.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

References
Zhen, C. G. et al. Achieving highly efficient fluorescent blue organic light-emitting diodes through optimizing molecular structures and device configuration. Advanced Functional Materials 21, 699–707 (2011).

Lee Swee Heng | Research asia research news
Further information:
http://www.imre.a-star.edu.sg/
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Let the good tubes roll
19.01.2018 | DOE/Pacific Northwest National Laboratory

nachricht Method uses DNA, nanoparticles and lithography to make optically active structures
19.01.2018 | Northwestern University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>