Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optimised clothing for wheelchair athletes

16.11.2012
More functionality and comfort for wheelchair basketball players and hand bikers. Within the framework of a research project, scientists at the Hohenstein Institute in Bönnigheim are aiming to optimise functionality and comfort of sportswear for wheelchair users.

About 4,200 athletes from about 165 countries competed for medals at the London 2012 Paralympic Games impressively demonstrating the high standards of international disabled sport. One example of this was the 24:50, 22 minutes that it took former Formula 1 racing driver Alessandro Zanardi to cover the specified 16km in the hand bike time trial to win the gold medal.

Whereas sports equipment such as hand bikes are individually built and totally customised to the specific requirements of the athletes and their physical impairment, as far as their clothing is concerned they frequently only have access to the ready-made clothes for able-bodied athletes. Within the framework of the research project (AiF-Nr. 17377 N), scientists at the Hohenstein Institute in Bönnigheim are aiming to optimise functionality and comfort of sportswear for wheelchair users.

Project leader Anke Klepser ascertained the physical dimensions of male wheelchair basket ball players and hand bikers: “By choosing these particular sports we are covering both indoor and outdoor sports which means that our research results can also be adapted to other sports disciplines.

A further benefit is that we are examining two different body postures, the more horizontal body position of the hand bikers and the upright sitting position of the wheelchair basketball players and this enables any results to be easily transferred to other sports.” The test persons were measured once in a stationary 3D Bodyscanner in their usual wheelchair and then also with a handscanner in their respective sports wheelchair.

Back in the 1980s clothing technology experts had already captured the physical dimensions of wheelchair users in order to improve the fit of everyday clothing. With the assistance of today's 3D scanner technology first of all the body can be captured in full and then a virtual twin (avatar) can be compiled which can be used to measure on the computer, as required, individual body measurements such as the back, legs or arms.

An important objective of the project is to use the measurement data to optimise the cuts and seam lines of sportswear. But also the physiological comfort, or in other words, the ability of the textiles to absorb body sweat and divert it away from the body as well as the heat insulation of the materials should also be adapted to the specific requirements of the athletes. Skin irritations caused by mechanical actions such as intensive friction of the arms on the upper body should be minimised in the demonstration/functional samples that are to be developed.

The sitting position of wheelchair users in particular creates specific requirements for clothing cuts. In order to achieve a horizontal waistband fit, the back part of the trousers must be cut longer than the front. The horizontal position of the handbikers on the other hand requires the exact opposite in functionalities if the sportswear is to sit in the optimum position. In the majority of wheelchair athletes the upper body and arms are very muscular which must be taken into consideration in the design of shirts and jackets. To create a good fit with extensive freedom of movement, the clothing items should therefore have adapted seam lines.

In addition to the anatomical specifics, as part of their project, the researchers also collated those special requirements which arise from the sports commitment of the athletes. Therefore, in addition to the 3D scanner measurements, Anke Klepser has also conducted a survey to collate the optimisation wishes of the test persons. For instance, the hand bikers said that they would like to see a narrow lower leg trouser width which would offer them better head wind protection.

The scientists also had to consider the specific requirements of disabled athletes in relation to the diversion of body sweat, also known as clothing moisture management. Due to the position of the back or back of the thigh which is in close contact with the hand bike or wheel chair, moisture can very quickly get trapped. This could be avoided through the use of various suitable materials and functional designs in these areas (Comfort-Mapping)

In contrast to this, depending on the type and degree of the spinal cord injury, for the majority of wheelchair athletes, the paralysis of the extremities is also linked to a restricted functionality of the body's own temperature control. For example, quadriplegics whose legs and arms are affected to a greater or lesser extent by the paralysis, do not sweat or only sweat to a limited extent and run the risk, especially in the case of very high external temperatures and/or high physical exertion, of suffering a circulatory collapse due to the body overheating. Water applied externally to the clothing can help in such cases by ensuring the necessary cooling through evaporation. Anke Klepser and her team also had to consider other specific aspects in their research work. "The clothing requirements for wheelchair athletes are extremely variable and complex. We hope that our data and information will form the basis for many optimised products which will make life easier for the athletes and will support them appropriately in their outstanding achievements. It is expected that the results of the project will be available for interested manufacturers from early 2014.

Contact:
Anke Klepser
Phone: +49 7143 271-325
Email: a.klepser@hohenstein.de

Rose-Marie Riedl | Hohenstein Institute
Further information:
http://www.hohenstein.de

More articles from Materials Sciences:

nachricht Getting closer to porous, light-responsive materials
26.07.2017 | Kyoto University

nachricht Multitasking monolayers
25.07.2017 | Vanderbilt University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>