Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optimised clothing for wheelchair athletes

16.11.2012
More functionality and comfort for wheelchair basketball players and hand bikers. Within the framework of a research project, scientists at the Hohenstein Institute in Bönnigheim are aiming to optimise functionality and comfort of sportswear for wheelchair users.

About 4,200 athletes from about 165 countries competed for medals at the London 2012 Paralympic Games impressively demonstrating the high standards of international disabled sport. One example of this was the 24:50, 22 minutes that it took former Formula 1 racing driver Alessandro Zanardi to cover the specified 16km in the hand bike time trial to win the gold medal.

Whereas sports equipment such as hand bikes are individually built and totally customised to the specific requirements of the athletes and their physical impairment, as far as their clothing is concerned they frequently only have access to the ready-made clothes for able-bodied athletes. Within the framework of the research project (AiF-Nr. 17377 N), scientists at the Hohenstein Institute in Bönnigheim are aiming to optimise functionality and comfort of sportswear for wheelchair users.

Project leader Anke Klepser ascertained the physical dimensions of male wheelchair basket ball players and hand bikers: “By choosing these particular sports we are covering both indoor and outdoor sports which means that our research results can also be adapted to other sports disciplines.

A further benefit is that we are examining two different body postures, the more horizontal body position of the hand bikers and the upright sitting position of the wheelchair basketball players and this enables any results to be easily transferred to other sports.” The test persons were measured once in a stationary 3D Bodyscanner in their usual wheelchair and then also with a handscanner in their respective sports wheelchair.

Back in the 1980s clothing technology experts had already captured the physical dimensions of wheelchair users in order to improve the fit of everyday clothing. With the assistance of today's 3D scanner technology first of all the body can be captured in full and then a virtual twin (avatar) can be compiled which can be used to measure on the computer, as required, individual body measurements such as the back, legs or arms.

An important objective of the project is to use the measurement data to optimise the cuts and seam lines of sportswear. But also the physiological comfort, or in other words, the ability of the textiles to absorb body sweat and divert it away from the body as well as the heat insulation of the materials should also be adapted to the specific requirements of the athletes. Skin irritations caused by mechanical actions such as intensive friction of the arms on the upper body should be minimised in the demonstration/functional samples that are to be developed.

The sitting position of wheelchair users in particular creates specific requirements for clothing cuts. In order to achieve a horizontal waistband fit, the back part of the trousers must be cut longer than the front. The horizontal position of the handbikers on the other hand requires the exact opposite in functionalities if the sportswear is to sit in the optimum position. In the majority of wheelchair athletes the upper body and arms are very muscular which must be taken into consideration in the design of shirts and jackets. To create a good fit with extensive freedom of movement, the clothing items should therefore have adapted seam lines.

In addition to the anatomical specifics, as part of their project, the researchers also collated those special requirements which arise from the sports commitment of the athletes. Therefore, in addition to the 3D scanner measurements, Anke Klepser has also conducted a survey to collate the optimisation wishes of the test persons. For instance, the hand bikers said that they would like to see a narrow lower leg trouser width which would offer them better head wind protection.

The scientists also had to consider the specific requirements of disabled athletes in relation to the diversion of body sweat, also known as clothing moisture management. Due to the position of the back or back of the thigh which is in close contact with the hand bike or wheel chair, moisture can very quickly get trapped. This could be avoided through the use of various suitable materials and functional designs in these areas (Comfort-Mapping)

In contrast to this, depending on the type and degree of the spinal cord injury, for the majority of wheelchair athletes, the paralysis of the extremities is also linked to a restricted functionality of the body's own temperature control. For example, quadriplegics whose legs and arms are affected to a greater or lesser extent by the paralysis, do not sweat or only sweat to a limited extent and run the risk, especially in the case of very high external temperatures and/or high physical exertion, of suffering a circulatory collapse due to the body overheating. Water applied externally to the clothing can help in such cases by ensuring the necessary cooling through evaporation. Anke Klepser and her team also had to consider other specific aspects in their research work. "The clothing requirements for wheelchair athletes are extremely variable and complex. We hope that our data and information will form the basis for many optimised products which will make life easier for the athletes and will support them appropriately in their outstanding achievements. It is expected that the results of the project will be available for interested manufacturers from early 2014.

Contact:
Anke Klepser
Phone: +49 7143 271-325
Email: a.klepser@hohenstein.de

Rose-Marie Riedl | Hohenstein Institute
Further information:
http://www.hohenstein.de

More articles from Materials Sciences:

nachricht Atomic structure of ultrasound material not what anyone expected
21.02.2018 | North Carolina State University

nachricht Hidden talents: Converting heat into electricity with pencil and paper
20.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>