Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


One Direction: Researchers Grow Nanocircuitry with Semiconducting Graphene Nanoribbons


In a development that could revolutionize electronic ciruitry, a research team from the University of Wisconsin at Madison (UW) and the U.S. Department of Energy’s Argonne National Laboratory has confirmed a new way to control the growth paths of graphene nanoribbons on the surface of a germainum crystal.

Germanium is a semiconductor and this method provides a straightforward way to make semiconducting nanoscale circuits from graphene, a form of carbon only one atom thick.

Gusinger et. al

Researchers at Argonne’s Center for Nanoscale Materials have confirmed the growth of self-directed graphene nanoribbons on the surface of the semiconducting material germanium by researchers at the University of Wisconsin at Madison.

The method was discovered by UW scientists and confirmed in tests at Argonne.

“Some researchers have wanted to make transistors out of carbon nanotubes but the problem is that they grow in all sorts of directions,” said Brian Kiraly of Argonne. “The innovation here is that you can grow these along circuit paths that works for your tech.”

UW researchers used chemical vapor deposition to grow graphene nanoribbons on germanium crystals. This technique flows a mixture of methane, hydrogen and argon gases into a tube furnace. At high temperatures, methane decomposes into carbon atoms that settle onto the germanium's surface to form a uniform graphene sheet. By adjusting the chamber's settings, the UW team was able to exert very precise control over the material.

"What we've discovered is that when graphene grows on germanium, it naturally forms nanoribbons with these very smooth, armchair edges," said Michael Arnold, an associate professor of materials science and engineering at UW-Madison. "The widths can be very, very narrow and the lengths of the ribbons can be very long, so all the desirable features we want in graphene nanoribbons are happening automatically with this technique."

Graphene, a one-atom-thick, two-dimensional sheet of carbon atoms, is known for moving electrons at lightning speed across its surface without interference. This high mobility makes the material an ideal candidate for faster, more energy-efficient electronics.

However, the semiconductor industry wants to make circuits start and stop electrons at will via band-gaps, as they do in computer chips. As a semimetal, graphene naturally has no band-gaps, making it a challenge for widespread industry adoption. Until now.

To confirm these findings, UW researchers went to Argonne staff scientists Brian Kiraly and Nathan Guisinger at the Center for Nanoscale Materials, a DOE Office of Science User Facility located at Argonne.

“We have some very unique capabilities here at the Center for Nanoscale Materials,” said Guisinger. “Not only are our facilities designed to work with all different sorts of materials from metals to oxides, we can also characterize, grow and synthesize materials."

Using scanning tunneling microscopy, a technique using electrons (instead of light or the eyes) to see the characteristics of a sample, researchers confirmed the presence of graphene nanoribbons growing on the germanium. Data gathered from the electron signatures allowed the researchers to create images of the material’s dimensions and orientation. In addition, they were able to determine its band structure and extent to which electrons scattered throughout the material.

“We’re looking at fundamental physical properties to verify that it is, in fact, graphene and it shows some characteristic electronic properties,” said Kiraly. “What’s even more interesting is that these nanoribbons can be made to grow in certain directions on one side of the germanium crystal, but not the other two sides.”

For use in electronic devices, the semiconductor industry is primarily interested in three faces of a germanium crystal. Depicting these faces in terms of coordinates (X,Y,Z), where single atoms connect to each other in a diamond-like grid structure, each face of a crystal (1,1,1) will have axes that differ from one (1,1,0) to the other (1,0,0).

Previous research shows that graphene sheets can grow on germanium crystal faces (1,1,1) and (1,1,0). However, this is the first time any study has recorded the growth of graphene nanoribbons on the (1,0,0) face.

As their investigations continue, researchers can now focus their efforts on exactly why self-directed graphene nanoribbons grow on the (1,0,0) face and determine if there is any unique interaction between the germanium and graphene that may play a role.

This research is detailed in the paper "Direct oriented growth of armchair graphene nanoribbons on germanium," published in Nature Communications. The method for this work was led by Michael Arnold’s Advanced Materials for Energy and Electronics Group at UW-Madison. Confirmation of findings was led by Nathan Guisinger and Brian Kiraly at the Center for Nanoscale Materials at Argonne National Laboratory. Additional co-authors include Robert M. Jacobberger, Matthieu Fortin-Deschenes, Pierre L. Levesque, Kyle M. McElhinny, Gerald J. Brady, Richard Rojas Delgado, Susmit Singha Roy, Andrew Mannix, Max G. Lagally, Paul G. Evans, Patrick Desjardins, Richard Martel and Mark C. Hersam.

This work was supported in part by the U.S. Department of Energy’s (DOE) Office of Science, the Natural Science and Engineering Research Council, the University of Wisconsin Materials Research Science and Engineering Center, the Department of Defense (DOD) Air Force Office of Scientific Research and the National Science Foundation’s Graduate Research Fellowships.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

Contact Information
Justin Breaux
External Communications Specialist
Phone: 630-252-5823
Mobile: 312-342-9155

Justin Breaux | newswise
Further information:

More articles from Materials Sciences:

nachricht How nanoscience will improve our health and lives in the coming years
27.10.2016 | University of California - Los Angeles

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>