Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On the Road to Mottronics

24.02.2014
Researchers at the Advanced Light Source Find Key to Controlling the Electronic and Magnetic Properties of Mott Thin Films

“Mottronics” is a term seemingly destined to become familiar to aficionados of electronic gadgets. Named for the Nobel laureate   Nevill Francis Mott, Mottronics involve materials – mostly metal oxides – that can be induced to transition between electrically conductive and insulating phases.


Epitaxial mismatches in the lattices of nickelate ultra-thin films can be used to tune the energetic landscape of Mott materials and thereby control conductor/insulator transitions.

If these phase transitions can be controlled, Mott materials hold great promise for future transistors and memories that feature higher energy efficiencies and faster switching speeds than today’s devices. A team of researchers working at Berkeley Lab’s Advanced Light Source (ALS) have  demonstrated the conducting/insulating phases of ultra-thin films of Mott materials can be controlled by applying an epitaxial strain to the crystal lattice.

"Our work shows how an epitaxial mismatch in the lattice can be used as a knot to tune the energetic landscape of Mott materials and thereby control conductor/insulator transitions,” says Jian Liu, a post-doctoral scholar now with Berkeley Lab’s Materials Sciences Division, who is the lead author on a paper describing this work in the journal Nature Communications. “Through epitaxial strain, we forced nickelate films containing only a few atomic layers into different phases with dramatically different electronic and magnetic properties. While some of these phases are not obtainable in conventional ways, we were able to produce them in a form that is ready for device development.”

The Nature Communications paper is titled “Heterointerface engineered electronic and magnetic phases of NdNiO3 thin films.” The corresponding author is Jak Chakhalian, a professor of physics at the University of Arkansas. Co-authors are Mehdi Kargarian, Mikhail Kareev, Ben Gray, Phil Ryan, Alejandro Cruz, Nadeem Tahir, Yi-De Chuang, Jinghua Guo, James Rondinelli, John Freeland and Gregory Fiete.

Nickel-based rare-earth perovskite oxides, or “nickelates,” are considered to be an ideal model for the study of Mott materials because they display strongly correlated electron systems that give rise to unique electronic and magnetic properties. Liu and his co-authors studied thin films of neodymium nickel oxide using ALS beamline 8.0.1, a high flux undulator beamline that produces x-ray beams optimized for the study of nanoscale materials and strongly correlated physics.

“ALS beamline 8.0.1 provides the high photon flux and energy range that are critical when dealing with nanoscale samples,” Liu says. “The state-of-the-art Resonant X-ray Scattering endstation has a high-speed, high-sensitivity CCD camera that makes it feasible to find and track diffraction peaks off a thin film that was only six nanometers thick.”

The transition between the conducting and insulating phases in nickelates is determined by various microscopic interactions, some of which favor the conducting phase, some which favor the insulating phase. The energetic balance of these interactions determines how easily electricity is conducted by electrons moving between the nickel and oxygen ions. By applying enough epitaxial strain to alter the space between these ions, Liu and his colleagues were able to tune this energetic balance and control the conducting/insulating transition. In addition, they   found strain could also be used to control the nickelate’s magnetic properties, again by exploiting the lattice mismatch.

“Magnetism is another hallmark of Mott materials that often goes hand-in-hand with the insulating state and is used to distinguish Mott insulators,” says Liu. “The challenge is that most Mott insulators, including nickelates, are antiferromagnets that macroscopically behave as non-magnetic materials. “At ALS beamline 8.0.1, we were able to directly track the magnetic evolution of our thin films while tuning the metal-to-insulator transition. Our findings give us a better understanding of the physics behind the magnetic properties of these nickelate films and point to potential applications for this magnetism in novel Mottronics devices.”

This research was primarily supported the U.S. Department of Energy’s Office of Science.

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov

Further reports about: Magnetic Properties Mottronics insulators interactions ions materials mismatch strain

More articles from Materials Sciences:

nachricht 3-D printing produces cartilage from strands of bioink
27.06.2016 | Penn State

nachricht Nanoscientists develop the 'ultimate discovery tool'
24.06.2016 | Northwestern University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

Im Focus: First experimental quantum simulation of particle physics phenomena

Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics. In the journal Nature, Rainer Blatt‘s and Peter Zoller’s research teams describe how they simulated the creation of elementary particle pairs out of the vacuum by using a quantum computer.

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The...

Im Focus: Is There Life On Mars?

Survivalist back from Space - 18 months on the outer skin of the ISS

A year and a half on the outer wall of the International Space Station ISS in altitude of 400 kilometers is a real challenge. Whether a primordial bacterium...

Im Focus: CWRU physicists deploy magnetic vortex to control electron spin

Potential technology for quantum computing, keener sensors

Researchers at Case Western Reserve University have developed a way to swiftly and precisely control electron spins at room temperature.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

 
Latest News

Four newly-identified genes could improve rice

27.06.2016 | Agricultural and Forestry Science

Scientists begin modeling universe with Einstein's full theory of general relativity

27.06.2016 | Physics and Astronomy

Newly-discovered signal in the cell sets protein pathways to mitochondria

27.06.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>