Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oddball enzyme provides easy path to synthetic biomaterials

17.05.2017

Materials scientists have written the recipe on how to use an oddball enzyme to build new biomaterials out of DNA. The work provides instructions for researchers the world over to build self-assembling molecules for applications ranging from drug delivery to nanowires.

The molecular machinery of the human body typically relies on genetic templates to carry out construction. For example, molecular machines called DNA polymerases read DNA base-by-base to build accurate copies.


New recipe uses overlooked DNA builder to simplify production of synthetic biomaterials for applications ranging from drug delivery to nanowires.

Credit: Stefan Zauscher, Duke University

There are, however, a few black sheep in the world of molecular biology that do not require a template. One such outlier, called terminal deoxynucleotidyl transferase (TdT), works in the immune system and catalyzes the template-free addition of nucleotides--the building blocks of DNA -- to a single-stranded DNA.

Seemingly random nucleotide sequences in a single DNA strand wouldn't seem to have much of a biological use -- but materials scientists have figured out what to do with it.

In a new paper, Duke University researchers build on their previous work and now describe in detail how the TdT enzyme can produce precise, high molecular weight, synthetic biomolecular structures much more easily than current methods.

Researchers can tailor synthesis to create single-stranded DNA that self-assemble into ball-like containers for drug delivery or to incorporate unnatural nucleotides to provide access to a wide range of medically useful abilities.

The results appear online on May 15, 2017 in the journal Angewandte Chemie International Edition.

"We're the first to show how TdT can build highly controlled single strands of DNA that can self-assemble into larger structures," said Stefan Zauscher, the Sternberg Family Professor of Mechanical Engineering and Materials Science at Duke University. "Similar materials can already be made, but the process is long and complicated, requiring multiple reactions. We can do it in a fraction of the time in a single pot."

TdT has advantage over typical, synthetic chain-building reactions in that it continues to add nucleotides to the end of the growing chain as long as they are available. This opens a vast design space to materials scientists.

Because the enzymes all work at the same pace and never stop, the resulting strands of DNA are all very close in size to each other--an important trait for controlling their mechanical properties. The never-ending process also means that researchers can force-feed TdT any nucleotide they want -- even unnatural ones -- simply by providing no other options.

"Your body makes strands of DNA out of only four nucleotides -- adenine, guanine, cytosine and uracil," said Chilkoti, the Alan L. Kaganov Professor and chair of the department of biomedical engineering at Duke. "But we can create synthetic nucleotides and force the enzyme to incorporate them. This opens many doors in making DNA-based polymers for different applications."

For example, unnatural nucleotides can incorporate molecules designed to facilitate "click chemistry" -- enabling the attachment of a whole suite of biomolecules. Researchers can also start the building process with a foundation made of a specific DNA sequence, called an aptamer, which can target specific proteins and cells.

"This enzyme has been around for decades, but this is the first time somebody has mapped these concepts into a blueprint for synthesizing a whole new family of polynucleotides," said Zauscher. "In the past, biochemists have largely been interested in what TdT does in the human immunological system and how it does it. We don't care about all of that, we're just interested in what material building blocks we can make with it. And the precision with which we can make polymers with this enzyme is actually quite exceptional."

###

This work was supported by the National Science Foundation (DMR-1411126 and DMR-1121107).

"High Molecular Weight Polynucleotides by Transferase-Catalyzed Living Chain-Growth Polycondensation." Lei Tang, Luis A. Navarro Jr., Ashutosh Chilkoti, and Stefan Zauscher. Angewandte Chemie, 2017. DOI: 10.1002/anie.201700991

Media Contact

Ken Kingery
ken.kingery@duke.edu
919-660-8414

 @DukeU

http://www.duke.edu 

Ken Kingery | EurekAlert!

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

25.09.2017 | Trade Fair News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>