Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Observation of skyrmions (magnetic vortex structures) in a ferromagnet with centrosymmetry

27.05.2013
New knowledge for magnetic information technology

Researchers using Lorentz electron microscopy have shown that magnetic skyrmions are spontaneously formed as nanomagnetic clusters in a ferromagnetic manganese oxide with centrosymmetry.

A research group including the NIMS Surface Physics and Structure Unit, Superconducting Properties Unit and others, using Lorentz electron microscopy, has shown that magnetic skyrmions are spontaneously formed as nanomagnetic clusters in a ferromagnetic manganese oxide with centrosymmetry.

Dr. Masahiro Nagao, Researcher (also of Waseda University), Dr. Yeong-Gi So, Researcher (presently at University of Tokyo), Toru Hara, Principal Researcher, and Koji Kimoto, Unit Director, of the Surface Physics and Structure Unit, and Masaaki Isobe, Group Leader of the Superconducting Properties Unit, et al., National Institute for Materials Science (President: Sukekatsu Ushioda), have used Lorentz electron microscopy to show that magnetic skyrmions are spontaneously formed as nanomagnetic clusters in a ferromagnetic manganese oxide with centrosymmetry.

The recently discovered magnetic vortex structures known as magnetic skyrmions have been shown to have very interesting and unprecedented properties, such as a very great anomalous Hall effect and skyrmion motion under ultra-low-density currents. They have raised hopes of their application as new magnetic elements. The formation of skyrmions is thought to require the application of a magnetic field to a magnet that does not have centrosymmetry.

However, it has now been shown for the first time by direct observation with Lorentz electron microscopy that nanomagnetic clusters spontaneously form skyrmion structures even in ferromagnetic manganese oxides where the crystal structures have centrosymmetry. This result suggests the possibility that skyrmion structures might be formed even in nanomagnetic clusters and nanoparticles of various ferromagnets that do not meet the conditions conventionally deemed necessary.

The skyrmions observed in this research indicate a phenomenon in which the magnetic vortex repeatedly inverts between clockwise and counterclockwise at a certain temperature because of thermal fluctuation. It was also found, moreover, that when two skyrmions come close together, they invert to the same vortex direction in synch with each other. This result would seem to provide new knowledge for the development of magnetic elements using the interaction between skyrmions.

The result also points to a method of determining the energy needed for inverting the magnetic vortex of individual nanomagnetic clusters by Lorentz electron microscope observation. This method could potentially be applied widely with nanomagnets and nanomagnetic devices for which it is difficult to determine the energy required for magnetic inversion by ordinary measurement.

Journal information
The findings were announced in Nature Nanotechnology on April 29, 2013

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/eng/news/press/2013/04/p201304290.html
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>