Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Observation of Half-Quantum Magnetic Flux in Sr2RuO4

28.02.2011
Kyoto University and University of Illinois announced on 14th January 2011 that they have succeeded in observing half-height magnetization steps in strontium ruthenium oxide (Sr2RuO4).

Professor Maeno of Kyoto University (Kyoto, Japan) and Assistant Professor Budakian of University of Illinois (Urbana-Champaign, IllinoisCUSA) were the leaders of both teams, and details of the research were published in the scientific Journal Science on the same day*.

Strontium ruthenium oxide (SRO) is an unconventional superconductor that has been proposed as the solid-state analog of the A-phase of superfluid helium 3 in which half-quantum vortex was predicted theoretically more than 30 years ago. In this research, magnetic measurements at 0.4 K were made, at University of Illinois, on a specimen fabricated by drilling a hole of 500 nm diameter on the 2 ƒÊm square Sr2RuO4 crystal grown at Kyoto University and placed on a micro-fabricated Si cantilever device developed at University of Illinois. The observed half-quantum magnetic flux, according to the news-releases from both universities, verifies that SRO is a spin-triplet superconductor and that application to topological quantum computing and spintronics is expected.

Journal information

J. Jang, D. G. Ferguson, V. Vakaryuk, R. Budakian, S. B. Chung, P. M. Goldbart and M. Maeno, "Observation of Hahf-Height Magnetization Steps in Sr2RuO4", Science Vol. 331 No. 6014 pp.186-188, Published 14 January 2011, DOI: 10.1126/science.1193839

Mikiko Tanifuji | Research asia research news
Further information:
http://nanonet.nims.go.jp/english/modules/news/article.php?a_id=737
http://www.researchsea.com

More articles from Materials Sciences:

nachricht One in 5 materials chemistry papers may be wrong, study suggests
15.12.2017 | Georgia Institute of Technology

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>