Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Observation and Electric Current Control of a Local Spin in a Single-Molecule Magnet

29.03.2011
By successfully changing the spin of a molecule, researchers have been able to perform an on/off operation for a molecular magnet. Such reversible switching paves the way for single molecule memory.

Japan Science and Technology Agency and Tohoku University announced on March 2, 2011 that Professor Tadahiro Yoneda of Tohoku University and his colleagues have succeeded in on/off operation of a single molecule magnet. Details are published in Nature Communications*.

A single spin is a basic unit of magnetism and molecular spintronics is attracting attentions in which a spin state of a molecule is switched on and off by changing the molecular structure. Terbium-phthalocyanine complex (TbPc2) forms a single magnet with double-decker structure in which a single Terbium (Tb) atom is sandwiched by two planar phthalocyaninato (Pc) ligands. Electric current is applied to TbPc2 adsorbed on a gold (111) surface via a scanning tunneling microscope. The dI/dV curve of the tunneling current shows a Kondo peak which appears by the presence of unpaired spin of ¦Ð-orbital electron of Pc ligand. The upper Pc ligand in TbPc2 was rotated by applying controlled electric current, leading to the disappearance and reappearance of Kondo peaks.

Theoretical analysis has shown that an angle formed by two ligands changes the strength of the magnet. The rotation shifts the molecular frontier-orbital energies, quenching the ¦Ð-electron spin. Reversible switching between two stable ligand orientations by applying a current pulse should make it possible to code information at a single-molecule level. Further development to a single molecule memory will be expected.

Journal information

*Tadahiro Komeda, Hironari Isshiki, Jie Liu, Yan-Feng Zhang, Nicol¨¢s Lorente, Keiichi Katoh, Brian K. Breedlove and Masahiro Yamashita, "Observation and electric current control of a local spin in a single-molecule magnet", Nature Communications, Volume: 2, Article number: 217,

DOI: doi: 10.1038/ncomms1210. Published 01 March 2011

Mikiko Tanifuji | Research asia research news
Further information:
http://nanonet.nims.go.jp/english/modules/news/article.php?a_id=744
http://www.researchsea.com

Further reports about: Magnet Nature Immunology Single-molecule Spin TbPc2 electric cars single molecule

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>