Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Observation and Electric Current Control of a Local Spin in a Single-Molecule Magnet

29.03.2011
By successfully changing the spin of a molecule, researchers have been able to perform an on/off operation for a molecular magnet. Such reversible switching paves the way for single molecule memory.

Japan Science and Technology Agency and Tohoku University announced on March 2, 2011 that Professor Tadahiro Yoneda of Tohoku University and his colleagues have succeeded in on/off operation of a single molecule magnet. Details are published in Nature Communications*.

A single spin is a basic unit of magnetism and molecular spintronics is attracting attentions in which a spin state of a molecule is switched on and off by changing the molecular structure. Terbium-phthalocyanine complex (TbPc2) forms a single magnet with double-decker structure in which a single Terbium (Tb) atom is sandwiched by two planar phthalocyaninato (Pc) ligands. Electric current is applied to TbPc2 adsorbed on a gold (111) surface via a scanning tunneling microscope. The dI/dV curve of the tunneling current shows a Kondo peak which appears by the presence of unpaired spin of ¦Ð-orbital electron of Pc ligand. The upper Pc ligand in TbPc2 was rotated by applying controlled electric current, leading to the disappearance and reappearance of Kondo peaks.

Theoretical analysis has shown that an angle formed by two ligands changes the strength of the magnet. The rotation shifts the molecular frontier-orbital energies, quenching the ¦Ð-electron spin. Reversible switching between two stable ligand orientations by applying a current pulse should make it possible to code information at a single-molecule level. Further development to a single molecule memory will be expected.

Journal information

*Tadahiro Komeda, Hironari Isshiki, Jie Liu, Yan-Feng Zhang, Nicol¨¢s Lorente, Keiichi Katoh, Brian K. Breedlove and Masahiro Yamashita, "Observation and electric current control of a local spin in a single-molecule magnet", Nature Communications, Volume: 2, Article number: 217,

DOI: doi: 10.1038/ncomms1210. Published 01 March 2011

Mikiko Tanifuji | Research asia research news
Further information:
http://nanonet.nims.go.jp/english/modules/news/article.php?a_id=744
http://www.researchsea.com

Further reports about: Magnet Nature Immunology Single-molecule Spin TbPc2 electric cars single molecule

More articles from Materials Sciences:

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Treated carbon pulls radioactive elements from water
20.01.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>