Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU’s Microscopic Monitoring May Yield Big Advances in Production of Consumer Products & Pharmaceuticals

05.02.2015

A team of NYU physicists has developed a method to monitor the properties of microscopic particles as they grow within a chemical reaction vessel, creating new opportunities to improve the quality and consistency of a wide range of industrial and consumer products. Their work, which appears as a cover story in the journal Soft Matter, offers benefits for commodities ranging from food and pharmaceuticals to perfumes and cosmetics.

“We can now look at each of the particles in a developing dispersion to see how the chemical reaction is progressing and whether the particles are turning out the way they should,” explains NYU Physics Professor David Grier, one of the paper’s authors and director of the university’s Center for Soft Matter Research.


David Grier

Holograms of individual spheres such as the examples shown here were used to improve the manufacturing process that created the silicone-rubber spheres shown in the grey-scale images.

Previously, scientists could not look inside a growing microparticle and understand the nature of the material it was composed of—Is the particle fully dense or is it porous? Are all the particles growing in the same way, or are some different from others?

“In the past, there was no way to know these answers because we could not characterize particles’ makeup,” Grier explains. “Now we can.”

The work reported in Soft Matter relies on a technique, holographic video microscopy, which was developed in Grier’s lab at NYU in 2007. It uses a laser beam to create holographic images of individual particles using conventional video cameras and digital video recorders to record the data.

The researchers novel analysis of these digitized holograms yields an unprecedented wealth of information about the positions and properties of the individual particles within the sample. This information, in turn, reveals how well the reaction is progressing and what steps should be taken to optimize its products.

To demonstrate the capabilities of their technique, the researchers studied the synthesis of crosslinked polydimethysiloxane (PDMS) spheres—compounds that make up silicone.

However, Grier says, the procedure could be applied to particles that comprise many consumer products.

“If a cosmetics company wants to add a new fragrance to its products or a pharmaceutical company needs to change the active ingredients of a drug, they need to add new chemical compounds,” Grier explains. “But how will they interact? How will this change the consistency of the product? And, especially in the case of drug development, will they be effective?

“This procedure shows that we now have the potential understand this process at the most fundamental level, which would enhance both product design and production.”

Holographic characterization provides insights into the properties of products that will enhance their safety, functionality, and consistency, and will reduce costs by improving process control and eliminating the need for trial-and-error testing, Grier says. His group’s proof-of-concept demonstration is being brought to the market by Spheryx, Inc. (http://spheryx.solutions/), which has exclusively licensed NYU’s technology for holographic characterization.

The paper’s other authors are: Chen Wang, a doctoral student in NYU’s Department of Physics; NYU Physics Professor Andrew Hollingsworth; and Hagay Shpaisman, an NYU post-doctoral fellow at the time of the study and now a Senior Lecturer at Israel’s Bar-Ilan University.

The research was supported by grants from Procter & Gamble and NASA (NNX13AR67G) as well as by the National Science Foundation under its MRSEC (DMR-1420073) and MRI (DMR-0923251) programs. The article describing this work is published in Soft Matter, volume 11, pages 1062 – 1066, February 14, 2015.

Contact Information
James Devitt
Deputy Director for Media Relations
james.devitt@nyu.edu
Phone: 212-998-6808

James Devitt | newswise
Further information:
http://www.nyu.edu

More articles from Materials Sciences:

nachricht Scientists predict a new superhard material with unique properties
18.06.2018 | Moscow Institute of Physics and Technology

nachricht A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive
15.06.2018 | University of California - San Diego

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>