Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU’s Microscopic Monitoring May Yield Big Advances in Production of Consumer Products & Pharmaceuticals

05.02.2015

A team of NYU physicists has developed a method to monitor the properties of microscopic particles as they grow within a chemical reaction vessel, creating new opportunities to improve the quality and consistency of a wide range of industrial and consumer products. Their work, which appears as a cover story in the journal Soft Matter, offers benefits for commodities ranging from food and pharmaceuticals to perfumes and cosmetics.

“We can now look at each of the particles in a developing dispersion to see how the chemical reaction is progressing and whether the particles are turning out the way they should,” explains NYU Physics Professor David Grier, one of the paper’s authors and director of the university’s Center for Soft Matter Research.


David Grier

Holograms of individual spheres such as the examples shown here were used to improve the manufacturing process that created the silicone-rubber spheres shown in the grey-scale images.

Previously, scientists could not look inside a growing microparticle and understand the nature of the material it was composed of—Is the particle fully dense or is it porous? Are all the particles growing in the same way, or are some different from others?

“In the past, there was no way to know these answers because we could not characterize particles’ makeup,” Grier explains. “Now we can.”

The work reported in Soft Matter relies on a technique, holographic video microscopy, which was developed in Grier’s lab at NYU in 2007. It uses a laser beam to create holographic images of individual particles using conventional video cameras and digital video recorders to record the data.

The researchers novel analysis of these digitized holograms yields an unprecedented wealth of information about the positions and properties of the individual particles within the sample. This information, in turn, reveals how well the reaction is progressing and what steps should be taken to optimize its products.

To demonstrate the capabilities of their technique, the researchers studied the synthesis of crosslinked polydimethysiloxane (PDMS) spheres—compounds that make up silicone.

However, Grier says, the procedure could be applied to particles that comprise many consumer products.

“If a cosmetics company wants to add a new fragrance to its products or a pharmaceutical company needs to change the active ingredients of a drug, they need to add new chemical compounds,” Grier explains. “But how will they interact? How will this change the consistency of the product? And, especially in the case of drug development, will they be effective?

“This procedure shows that we now have the potential understand this process at the most fundamental level, which would enhance both product design and production.”

Holographic characterization provides insights into the properties of products that will enhance their safety, functionality, and consistency, and will reduce costs by improving process control and eliminating the need for trial-and-error testing, Grier says. His group’s proof-of-concept demonstration is being brought to the market by Spheryx, Inc. (http://spheryx.solutions/), which has exclusively licensed NYU’s technology for holographic characterization.

The paper’s other authors are: Chen Wang, a doctoral student in NYU’s Department of Physics; NYU Physics Professor Andrew Hollingsworth; and Hagay Shpaisman, an NYU post-doctoral fellow at the time of the study and now a Senior Lecturer at Israel’s Bar-Ilan University.

The research was supported by grants from Procter & Gamble and NASA (NNX13AR67G) as well as by the National Science Foundation under its MRSEC (DMR-1420073) and MRI (DMR-0923251) programs. The article describing this work is published in Soft Matter, volume 11, pages 1062 – 1066, February 14, 2015.

Contact Information
James Devitt
Deputy Director for Media Relations
james.devitt@nyu.edu
Phone: 212-998-6808

James Devitt | newswise
Further information:
http://www.nyu.edu

More articles from Materials Sciences:

nachricht Reliable molecular toggle switch developed
30.03.2017 | Karlsruher Institut für Technologie (KIT)

nachricht Researchers shoot for success with simulations of laser pulse-material interactions
29.03.2017 | DOE/Oak Ridge National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>