Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU researchers find corn starch solution can help shape solid materials

05.11.2010
New York University researchers have developed a method to shape solid materials using a corn starch solution.

The process, devised by researchers in NYU's Courant Institute of Mathematical Sciences and Department of Physics, offers a potential technique for material cutting and manufacturing processes.

Their work is described in the journal Physical Review Letters.

Manufacturers use a variety of methods for shaping solid materials, ranging from laser cutting to high-speed jets of water. While altering the shape of such materials, such as glass, metal, or stone, is relatively straightforward, doing so with precision often proves challenging.

With this in mind, the NYU researchers sought to create an alternative, but rudimentary, method to shape solid materials in a precise fashion. To do so, they considered a process involving a corn starch solution.

Similar solutions have proved valuable in creating body armor—but for different reasons. The molecules in these fluids—also called shear-thickening fluids—are closely packed, but loosely arranged. Under most conditions, they flow like most liquids. However, when met with pressure from an object or other force, its particles interlock and the fluid acts like a solid. Body armor comprised of shear-thickening fluids, when met with bullets, become hard and deflect incoming projectiles.

The NYU researchers sought to apply these principles in a different manner. Instead of using the solution to deflect objects, they aimed to use it as part of a process to shape solid materials—in this case, a wall of modeling clay.

To do this, they submerged a motor-powered, plastic sphere through the cornstarch solution toward a containing wall made of modeling clay, stopping just short of the wall. Using the force of the sphere to harden the cornstarch solution, the researchers were able to make indentations in the wall of modeling clay. In addition, they were able to do so with a degree of precision by taking into account speed, force, and geometry. By moving the sphere at fast speeds through the solution, they created large depressions in the clay; by slowing it down, they created smaller depressions.

The study's authors were: Bin Liu, a post-doctoral researcher in NYU's Department of Physics, Michael Shelley, a professor in NYU's Courant Institute of Mathematical Sciences; and Jun Zhang, a professor in NYU's Department of Physics and Courant Institute.

The research was supported by grants from the National Science Foundation and the Department of Energy.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Materials Sciences:

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Treated carbon pulls radioactive elements from water
20.01.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>