Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nuclear detector

13.09.2011
New materials hold promise for better detection of nuclear weapons

Northwestern University scientists have developed new materials that can detect hard radiation, a very difficult thing to do. The method could lead to a handheld device for detecting nuclear weapons and materials, such as a "nuclear bomb in a suitcase" scenario.

"The terrorist attacks of 9/11 heightened interest in this area of security, but the problem remains a real challenge," said Mercouri G. Kanatzidis, who led the research. "We have designed promising semiconductor materials that, once optimized, could be a fast, effective and inexpensive method for detecting dangerous materials such as plutonium and uranium."

Kanatzidis is a Charles E. and Emma H. Morrison Professor of Chemistry in the Weinberg College of Arts and Sciences. He also holds a joint appointment at Argonne National Laboratory.

The Northwestern materials perform as well as materials that have emerged from five decades of research and development, Kanatzidis said.

To design an effective detector, Kanatzidis and his team turned to the heavy element part of the periodic table. The researchers developed a design concept to make new semiconductor materials of heavy elements in which most of the compound's electrons are bound up and not mobile. When gamma rays enter the compound, they excite the electrons, making them mobile and thus detectable. And, because every element has a particular spectrum, the signal identifies the detected material.

The method, called dimensional reduction, will be published in the Sept. 22 issue of the journal Advanced Materials.

In most materials, gamma rays emitted by nuclear materials would just pass right through, making them undetectable. But dense and heavy materials, such as mercury, thallium, selenium and cesium, absorb the gamma rays very well.

The problem the researchers faced was that the heavy elements have a lot of mobile electrons. This means when the gamma rays hit the material and excite electrons the change is not detectable.

"It's like having a bucket of water and adding one drop -- the change is negligible," Kanatzidis explained. "We needed a heavy element material without a lot of electrons. This doesn't exist naturally so we had to design a new material."

Kanatzidis and his colleagues designed their semiconductor materials to be crystalline in structure, which immobilized their electrons.

The materials they developed and successfully demonstrated as effective gamma ray detectors are cesium-mercury-sulfide and cesium-mercury-selenide. Both semiconductors operate at room temperature, and the process is scaleable.

"Our materials are very promising and competitive," Kanatzidis said. "With further development, they should outperform existing hard radiation detector materials. They also might be useful in biomedicine, such as diagnostic imaging."

The work was a Northwestern team effort, involving three professors and their research groups. Kanatzidis made the materials; Bruce W. Wessels, the Walter P. Murphy Professor of Materials Science and Engineering in the McCormick School of Engineering and Applied Science, measured and evaluated the materials; and Arthur J. Freeman, a Charles E. and Emma H. Morrison Professor of Physics and Astronomy in Weinberg, provided theoretical predictions of the materials' performance.

The paper, titled "Dimensional Reduction: A Design Tool for New Radiation Detection Materials," is available at http://onlinelibrary.wiley.com/doi/10.1002/adma.201102450/full.

In addition to Kanatzidis, Wessels and Freeman, other authors include John Androulakis, Sebastian C. Peter, Hao Li, Christos D. Malliakas, John A. Peters, Zhifu Liu, Jung-Hwan Song and Hosub Jin.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>