Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nuclear detector

13.09.2011
New materials hold promise for better detection of nuclear weapons

Northwestern University scientists have developed new materials that can detect hard radiation, a very difficult thing to do. The method could lead to a handheld device for detecting nuclear weapons and materials, such as a "nuclear bomb in a suitcase" scenario.

"The terrorist attacks of 9/11 heightened interest in this area of security, but the problem remains a real challenge," said Mercouri G. Kanatzidis, who led the research. "We have designed promising semiconductor materials that, once optimized, could be a fast, effective and inexpensive method for detecting dangerous materials such as plutonium and uranium."

Kanatzidis is a Charles E. and Emma H. Morrison Professor of Chemistry in the Weinberg College of Arts and Sciences. He also holds a joint appointment at Argonne National Laboratory.

The Northwestern materials perform as well as materials that have emerged from five decades of research and development, Kanatzidis said.

To design an effective detector, Kanatzidis and his team turned to the heavy element part of the periodic table. The researchers developed a design concept to make new semiconductor materials of heavy elements in which most of the compound's electrons are bound up and not mobile. When gamma rays enter the compound, they excite the electrons, making them mobile and thus detectable. And, because every element has a particular spectrum, the signal identifies the detected material.

The method, called dimensional reduction, will be published in the Sept. 22 issue of the journal Advanced Materials.

In most materials, gamma rays emitted by nuclear materials would just pass right through, making them undetectable. But dense and heavy materials, such as mercury, thallium, selenium and cesium, absorb the gamma rays very well.

The problem the researchers faced was that the heavy elements have a lot of mobile electrons. This means when the gamma rays hit the material and excite electrons the change is not detectable.

"It's like having a bucket of water and adding one drop -- the change is negligible," Kanatzidis explained. "We needed a heavy element material without a lot of electrons. This doesn't exist naturally so we had to design a new material."

Kanatzidis and his colleagues designed their semiconductor materials to be crystalline in structure, which immobilized their electrons.

The materials they developed and successfully demonstrated as effective gamma ray detectors are cesium-mercury-sulfide and cesium-mercury-selenide. Both semiconductors operate at room temperature, and the process is scaleable.

"Our materials are very promising and competitive," Kanatzidis said. "With further development, they should outperform existing hard radiation detector materials. They also might be useful in biomedicine, such as diagnostic imaging."

The work was a Northwestern team effort, involving three professors and their research groups. Kanatzidis made the materials; Bruce W. Wessels, the Walter P. Murphy Professor of Materials Science and Engineering in the McCormick School of Engineering and Applied Science, measured and evaluated the materials; and Arthur J. Freeman, a Charles E. and Emma H. Morrison Professor of Physics and Astronomy in Weinberg, provided theoretical predictions of the materials' performance.

The paper, titled "Dimensional Reduction: A Design Tool for New Radiation Detection Materials," is available at http://onlinelibrary.wiley.com/doi/10.1002/adma.201102450/full.

In addition to Kanatzidis, Wessels and Freeman, other authors include John Androulakis, Sebastian C. Peter, Hao Li, Christos D. Malliakas, John A. Peters, Zhifu Liu, Jung-Hwan Song and Hosub Jin.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>