Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel ORNL technique enables air-stable water droplet networks

14.05.2014

A simple new technique to form interlocking beads of water in ambient conditions could prove valuable for applications in biological sensing, membrane research and harvesting water from fog.

Researchers at the Department of Energy’s Oak Ridge National Laboratory have developed a method to create air-stable water droplet networks known as droplet interface bilayers. These interconnected water droplets have many roles in biological research because their interfaces simulate cell membranes. Cumbersome fabrication methods, however, have limited their use.


Researchers at the Department of Energy’s Oak Ridge National Laboratory have developed a method to create air-stable water droplet networks that are valuable for applications in biological sensing and membrane research. Image credit: Kyle Kuykendall.

“The way they’ve been made since their inception is that two water droplets are formed in an oil bath then brought together while they’re submerged in oil,” said ORNL’s Pat Collier, who led the team’s study published in the Proceedings of the National Academy of Sciences. “Otherwise they would just pop like soap bubbles.”

Instead of injecting water droplets into an oil bath, the ORNL research team experimented with placing the droplets on a superhydrophobic surface infused with a coating of oil. The droplets aligned side by side without merging.

... more about:
»Collier »DOE »Energy »Nanotechnology »ORNL »nanoscale

To the researchers’ surprise, they were also able to form non-coalescing water droplet networks without including lipids in the water solution. Scientists typically incorporate phospholipids into the water mixture, which leads to the formation of an interlocking lipid bilayer between the water droplets.

“When you have those lipids at the interfaces of the water drops, it’s well known that they won’t coalesce because the interfaces join together and form a stable bilayer,” ORNL coauthor Jonathan Boreyko said. “So our surprise was that even without lipids in the system, the pure water droplets on an oil-infused surface in air still don’t coalesce together.”

The team’s research revealed how the unexpected effect is caused by a thin oil film that is squeezed between the pure water droplets as they come together, preventing the droplets from merging into one. Watch a video of the process on ORNL’s YouTube channel.

With or without the addition of lipids, the team’s technique offers new insight for a host of applications. Controlling the behavior of pure water droplets on oil-infused surfaces is key to developing dew- or fog-harvesting technology as well as more efficient condensers, for instance.

“Our finding of this non-coalescence phenomenon will shed light on these droplet-droplet interactions that can occur on oil-infused systems,” Boreyko said.

The ability to create membrane-like water droplet networks by adding lipids leads to a different set of functional applications, Collier noted.

“These bilayers can be used in anything from synthetic biology to creating circuits to bio-sensing applications,” he said. “For example, we could make a bio-battery or a signaling network by stringing some of these droplets together. Or, we could use it to sense the presence of airborne molecules.”

The team’s study also demonstrated ways to control the performance and lifetime of the water droplets by manipulating oil viscosity and temperature and humidity levels.

Coauthors include ORNL’s Georgios Polizos and Panos Datskos, and the University of Tennessee’s Stephen Sarles. The researchers have filed an invention disclosure on their technique.

This research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at ORNL by the Scientific User Facilities Division in DOE’s Office of Basic Energy Sciences. Funding was also provided by an Air Force Office of Scientific Research Basic Research Initiative grant and the SunShot Initiative within DOE’s Office of Energy Efficiency and Renewable Energy.

CNMS is one of the five DOE Nanoscale Science Research Centers, NSRCs, supported by the DOE Office of Science, as premier national user facilities for interdisciplinary research at the nanoscale. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos national laboratories.  For more information about the DOE NSRCs, please visit http://science.energy.gov/bes/suf/user-facilities/nanoscale-science-research-centers/.

UT-Battelle manages ORNL for DOE's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/.

Morgan McCorkle | Eurek Alert!

Further reports about: Collier DOE Energy Nanotechnology ORNL nanoscale

More articles from Materials Sciences:

nachricht ORNL-Led Team Demonstrates Desalination with Nanoporous Graphene Membrane
27.03.2015 | Oak Ridge National Laboratory

nachricht Rare-earth innovation to improve nylon manufacturing
26.03.2015 | DOE/Ames Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

Two Most Destructive Termite Species Forming Superswarms in South Florida

27.03.2015 | Agricultural and Forestry Science

ORNL-Led Team Demonstrates Desalination with Nanoporous Graphene Membrane

27.03.2015 | Materials Sciences

Coorong Fish Hedge Their Bets for Survival

27.03.2015 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>