Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Noble Metal in Action: Jacobs Scientists Create Palladium-Oxide with Extra High Catalytic Potential

14.02.2011
Ulrich Kortz, Professor of Chemistry at Jacobs University, and his team report the synthesis of a novel, discrete noble metal-oxide, containing a record number of 22 palladium atoms, as well as two central copper ions.

In addition to its high catalytic potential, the {Cu2Pd22} cluster compound also exhibits very unusual intramolecular magnetic interactions. The study, which has now been published as a “Very Important Paper” in the Angewandte Chemie International Edition (DOI: 10.1002/anie.201006734), opens new perspectives for a better understanding of noble-metal particulate based oxidation catalysis as well as intramolecular magnetic phenomena of importance in materials and life sciences.

Noble metal catalysts are of particular commercial importance, and among these catalysts, palladium- and platinum-containing materials have received particular attention in recent years owing to their role as oxidation catalysts in automobile emission control systems as well as reforming catalysts for the production of high-octane gasoline. Although these noble metal catalysts, which usually are employed as finely divided particulates with dimensions of about one to two nanometers, have been the object of intensive study for almost 200 years, their precise structure and composition still is mostly ill-defined on the sub-nanometer scale.

In 2008, the research group of Ulrich Kortz (http://www.jacobs-university.de/ses/ukortz), Professor of Chemistry at Jacobs University and longtime expert in metal-oxide synthesis, made a landmark discovery when they developed a simple synthetic strategy, which, for the first time, allowed for the preparation of a discrete, stable noble metal oxide in water. This polyoxopalladate with its 13 palladium atoms and {Pd13O32} core structure turned out to be the forerunner of a family of highly reactive noble-metal oxides. It was the combination of several noble metal atoms with oxygen atoms in one ion that proved to be essential for the compound’s high reactivity and at the same time provided new insights into the detailed molecular mechanism of catalysis by noble metal particulates.

Now, Kortz and his co-workers Natalya Izarova and Maria Barsukova have achieved the synthesis of a discrete noble metal-oxide containing the record number of 22 palladium(II) ions with the formula [Cu2Pd22P12O60(OH)8]20– ({Cu2Pd22}). This species is the largest noble metalate reported to date, and in addition it contains two copper(II) ions, which makes it the first mixed palladium-copper polyanion.

The novel double-cuboid shaped metal-oxide cluster offers tremendous catalytic potential, mainly because all 22 PdII ions are located on its surface and hence are highly accessible for oxidants and substrates alike. “One single {Cu2Pd22} therefore has many catalytically active centers. And, compared to the more commonly used catalytic palladium metal coatings on support materials, our new palladium oxide has the additional advantage of being applicable in solution as a homogeneous catalyst as well as in crystalline form as a heterogeneous solid catalyst in liquid phase reactions. Especially these latter qualities predestine it for industrial purposes,” comments Ulrich Kortz on possible applications of the newly created compound. “Moreover, our new polyanion, because of its stable and discrete nature, also might pave the way for the fabrication of monodisperse palladium particles on supports, which are most effective catalysts for various reduction and oxidation processes, such as in fuel cells, which convert hydrogen and oxygen directly into electricity in a carbon-neutral process,” Kortz adds.

In addition to its high catalytic potential, {Cu2Pd22} also exhibits extremely interesting magnetic exchange interactions between the two central, but rather distant, copper(II) ions, which could be explored in detail because of the compound’s discrete and stable nature and the well characterized structure. As many solids and biological materials contain similar dimeric ion constellations, the magnetic results on {Cu2Pd22} open new perspectives for a better understanding of intramolecular magnetic phenomena of importance in materials and life sciences

For further questions please contact:
Ulrich Kortz | Professor of Chemistry
Phone: +49 421 200-3235 | Email: u.kortz@jacobs-university.de
Weitere Informationen:
http://onlinelibrary.wiley.com/doi/10.1002/anie.201006734/abstract (Synthesis and Characterization of the Dicopper(II)-Containing 22-Palladate(II) [CuII2PdII22PV12O60(OH)8]20, Angewandte Chemie International Edition, DOI: 10.1002/anie.201006734)

Dr. Kristin Beck | idw
Further information:
http://onlinelibrary.wiley.com/doi/10.1002/anie.201006734/abstract
http://www.jacobs-university.de

More articles from Materials Sciences:

nachricht Researchers printed graphene-like materials with inkjet
18.08.2017 | Aalto University

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>