Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Noble Metal in Action: Jacobs Scientists Create Palladium-Oxide with Extra High Catalytic Potential

14.02.2011
Ulrich Kortz, Professor of Chemistry at Jacobs University, and his team report the synthesis of a novel, discrete noble metal-oxide, containing a record number of 22 palladium atoms, as well as two central copper ions.

In addition to its high catalytic potential, the {Cu2Pd22} cluster compound also exhibits very unusual intramolecular magnetic interactions. The study, which has now been published as a “Very Important Paper” in the Angewandte Chemie International Edition (DOI: 10.1002/anie.201006734), opens new perspectives for a better understanding of noble-metal particulate based oxidation catalysis as well as intramolecular magnetic phenomena of importance in materials and life sciences.

Noble metal catalysts are of particular commercial importance, and among these catalysts, palladium- and platinum-containing materials have received particular attention in recent years owing to their role as oxidation catalysts in automobile emission control systems as well as reforming catalysts for the production of high-octane gasoline. Although these noble metal catalysts, which usually are employed as finely divided particulates with dimensions of about one to two nanometers, have been the object of intensive study for almost 200 years, their precise structure and composition still is mostly ill-defined on the sub-nanometer scale.

In 2008, the research group of Ulrich Kortz (http://www.jacobs-university.de/ses/ukortz), Professor of Chemistry at Jacobs University and longtime expert in metal-oxide synthesis, made a landmark discovery when they developed a simple synthetic strategy, which, for the first time, allowed for the preparation of a discrete, stable noble metal oxide in water. This polyoxopalladate with its 13 palladium atoms and {Pd13O32} core structure turned out to be the forerunner of a family of highly reactive noble-metal oxides. It was the combination of several noble metal atoms with oxygen atoms in one ion that proved to be essential for the compound’s high reactivity and at the same time provided new insights into the detailed molecular mechanism of catalysis by noble metal particulates.

Now, Kortz and his co-workers Natalya Izarova and Maria Barsukova have achieved the synthesis of a discrete noble metal-oxide containing the record number of 22 palladium(II) ions with the formula [Cu2Pd22P12O60(OH)8]20– ({Cu2Pd22}). This species is the largest noble metalate reported to date, and in addition it contains two copper(II) ions, which makes it the first mixed palladium-copper polyanion.

The novel double-cuboid shaped metal-oxide cluster offers tremendous catalytic potential, mainly because all 22 PdII ions are located on its surface and hence are highly accessible for oxidants and substrates alike. “One single {Cu2Pd22} therefore has many catalytically active centers. And, compared to the more commonly used catalytic palladium metal coatings on support materials, our new palladium oxide has the additional advantage of being applicable in solution as a homogeneous catalyst as well as in crystalline form as a heterogeneous solid catalyst in liquid phase reactions. Especially these latter qualities predestine it for industrial purposes,” comments Ulrich Kortz on possible applications of the newly created compound. “Moreover, our new polyanion, because of its stable and discrete nature, also might pave the way for the fabrication of monodisperse palladium particles on supports, which are most effective catalysts for various reduction and oxidation processes, such as in fuel cells, which convert hydrogen and oxygen directly into electricity in a carbon-neutral process,” Kortz adds.

In addition to its high catalytic potential, {Cu2Pd22} also exhibits extremely interesting magnetic exchange interactions between the two central, but rather distant, copper(II) ions, which could be explored in detail because of the compound’s discrete and stable nature and the well characterized structure. As many solids and biological materials contain similar dimeric ion constellations, the magnetic results on {Cu2Pd22} open new perspectives for a better understanding of intramolecular magnetic phenomena of importance in materials and life sciences

For further questions please contact:
Ulrich Kortz | Professor of Chemistry
Phone: +49 421 200-3235 | Email: u.kortz@jacobs-university.de
Weitere Informationen:
http://onlinelibrary.wiley.com/doi/10.1002/anie.201006734/abstract (Synthesis and Characterization of the Dicopper(II)-Containing 22-Palladate(II) [CuII2PdII22PV12O60(OH)8]20, Angewandte Chemie International Edition, DOI: 10.1002/anie.201006734)

Dr. Kristin Beck | idw
Further information:
http://onlinelibrary.wiley.com/doi/10.1002/anie.201006734/abstract
http://www.jacobs-university.de

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>