Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Noble Metal in Action: Jacobs Scientists Create Palladium-Oxide with Extra High Catalytic Potential

14.02.2011
Ulrich Kortz, Professor of Chemistry at Jacobs University, and his team report the synthesis of a novel, discrete noble metal-oxide, containing a record number of 22 palladium atoms, as well as two central copper ions.

In addition to its high catalytic potential, the {Cu2Pd22} cluster compound also exhibits very unusual intramolecular magnetic interactions. The study, which has now been published as a “Very Important Paper” in the Angewandte Chemie International Edition (DOI: 10.1002/anie.201006734), opens new perspectives for a better understanding of noble-metal particulate based oxidation catalysis as well as intramolecular magnetic phenomena of importance in materials and life sciences.

Noble metal catalysts are of particular commercial importance, and among these catalysts, palladium- and platinum-containing materials have received particular attention in recent years owing to their role as oxidation catalysts in automobile emission control systems as well as reforming catalysts for the production of high-octane gasoline. Although these noble metal catalysts, which usually are employed as finely divided particulates with dimensions of about one to two nanometers, have been the object of intensive study for almost 200 years, their precise structure and composition still is mostly ill-defined on the sub-nanometer scale.

In 2008, the research group of Ulrich Kortz (http://www.jacobs-university.de/ses/ukortz), Professor of Chemistry at Jacobs University and longtime expert in metal-oxide synthesis, made a landmark discovery when they developed a simple synthetic strategy, which, for the first time, allowed for the preparation of a discrete, stable noble metal oxide in water. This polyoxopalladate with its 13 palladium atoms and {Pd13O32} core structure turned out to be the forerunner of a family of highly reactive noble-metal oxides. It was the combination of several noble metal atoms with oxygen atoms in one ion that proved to be essential for the compound’s high reactivity and at the same time provided new insights into the detailed molecular mechanism of catalysis by noble metal particulates.

Now, Kortz and his co-workers Natalya Izarova and Maria Barsukova have achieved the synthesis of a discrete noble metal-oxide containing the record number of 22 palladium(II) ions with the formula [Cu2Pd22P12O60(OH)8]20– ({Cu2Pd22}). This species is the largest noble metalate reported to date, and in addition it contains two copper(II) ions, which makes it the first mixed palladium-copper polyanion.

The novel double-cuboid shaped metal-oxide cluster offers tremendous catalytic potential, mainly because all 22 PdII ions are located on its surface and hence are highly accessible for oxidants and substrates alike. “One single {Cu2Pd22} therefore has many catalytically active centers. And, compared to the more commonly used catalytic palladium metal coatings on support materials, our new palladium oxide has the additional advantage of being applicable in solution as a homogeneous catalyst as well as in crystalline form as a heterogeneous solid catalyst in liquid phase reactions. Especially these latter qualities predestine it for industrial purposes,” comments Ulrich Kortz on possible applications of the newly created compound. “Moreover, our new polyanion, because of its stable and discrete nature, also might pave the way for the fabrication of monodisperse palladium particles on supports, which are most effective catalysts for various reduction and oxidation processes, such as in fuel cells, which convert hydrogen and oxygen directly into electricity in a carbon-neutral process,” Kortz adds.

In addition to its high catalytic potential, {Cu2Pd22} also exhibits extremely interesting magnetic exchange interactions between the two central, but rather distant, copper(II) ions, which could be explored in detail because of the compound’s discrete and stable nature and the well characterized structure. As many solids and biological materials contain similar dimeric ion constellations, the magnetic results on {Cu2Pd22} open new perspectives for a better understanding of intramolecular magnetic phenomena of importance in materials and life sciences

For further questions please contact:
Ulrich Kortz | Professor of Chemistry
Phone: +49 421 200-3235 | Email: u.kortz@jacobs-university.de
Weitere Informationen:
http://onlinelibrary.wiley.com/doi/10.1002/anie.201006734/abstract (Synthesis and Characterization of the Dicopper(II)-Containing 22-Palladate(II) [CuII2PdII22PV12O60(OH)8]20, Angewandte Chemie International Edition, DOI: 10.1002/anie.201006734)

Dr. Kristin Beck | idw
Further information:
http://onlinelibrary.wiley.com/doi/10.1002/anie.201006734/abstract
http://www.jacobs-university.de

More articles from Materials Sciences:

nachricht Researchers shoot for success with simulations of laser pulse-material interactions
29.03.2017 | DOE/Oak Ridge National Laboratory

nachricht Nanomaterial makes laser light more applicable
28.03.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>