Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Noble Metal in Action: Jacobs Scientists Create Palladium-Oxide with Extra High Catalytic Potential

14.02.2011
Ulrich Kortz, Professor of Chemistry at Jacobs University, and his team report the synthesis of a novel, discrete noble metal-oxide, containing a record number of 22 palladium atoms, as well as two central copper ions.

In addition to its high catalytic potential, the {Cu2Pd22} cluster compound also exhibits very unusual intramolecular magnetic interactions. The study, which has now been published as a “Very Important Paper” in the Angewandte Chemie International Edition (DOI: 10.1002/anie.201006734), opens new perspectives for a better understanding of noble-metal particulate based oxidation catalysis as well as intramolecular magnetic phenomena of importance in materials and life sciences.

Noble metal catalysts are of particular commercial importance, and among these catalysts, palladium- and platinum-containing materials have received particular attention in recent years owing to their role as oxidation catalysts in automobile emission control systems as well as reforming catalysts for the production of high-octane gasoline. Although these noble metal catalysts, which usually are employed as finely divided particulates with dimensions of about one to two nanometers, have been the object of intensive study for almost 200 years, their precise structure and composition still is mostly ill-defined on the sub-nanometer scale.

In 2008, the research group of Ulrich Kortz (http://www.jacobs-university.de/ses/ukortz), Professor of Chemistry at Jacobs University and longtime expert in metal-oxide synthesis, made a landmark discovery when they developed a simple synthetic strategy, which, for the first time, allowed for the preparation of a discrete, stable noble metal oxide in water. This polyoxopalladate with its 13 palladium atoms and {Pd13O32} core structure turned out to be the forerunner of a family of highly reactive noble-metal oxides. It was the combination of several noble metal atoms with oxygen atoms in one ion that proved to be essential for the compound’s high reactivity and at the same time provided new insights into the detailed molecular mechanism of catalysis by noble metal particulates.

Now, Kortz and his co-workers Natalya Izarova and Maria Barsukova have achieved the synthesis of a discrete noble metal-oxide containing the record number of 22 palladium(II) ions with the formula [Cu2Pd22P12O60(OH)8]20– ({Cu2Pd22}). This species is the largest noble metalate reported to date, and in addition it contains two copper(II) ions, which makes it the first mixed palladium-copper polyanion.

The novel double-cuboid shaped metal-oxide cluster offers tremendous catalytic potential, mainly because all 22 PdII ions are located on its surface and hence are highly accessible for oxidants and substrates alike. “One single {Cu2Pd22} therefore has many catalytically active centers. And, compared to the more commonly used catalytic palladium metal coatings on support materials, our new palladium oxide has the additional advantage of being applicable in solution as a homogeneous catalyst as well as in crystalline form as a heterogeneous solid catalyst in liquid phase reactions. Especially these latter qualities predestine it for industrial purposes,” comments Ulrich Kortz on possible applications of the newly created compound. “Moreover, our new polyanion, because of its stable and discrete nature, also might pave the way for the fabrication of monodisperse palladium particles on supports, which are most effective catalysts for various reduction and oxidation processes, such as in fuel cells, which convert hydrogen and oxygen directly into electricity in a carbon-neutral process,” Kortz adds.

In addition to its high catalytic potential, {Cu2Pd22} also exhibits extremely interesting magnetic exchange interactions between the two central, but rather distant, copper(II) ions, which could be explored in detail because of the compound’s discrete and stable nature and the well characterized structure. As many solids and biological materials contain similar dimeric ion constellations, the magnetic results on {Cu2Pd22} open new perspectives for a better understanding of intramolecular magnetic phenomena of importance in materials and life sciences

For further questions please contact:
Ulrich Kortz | Professor of Chemistry
Phone: +49 421 200-3235 | Email: u.kortz@jacobs-university.de
Weitere Informationen:
http://onlinelibrary.wiley.com/doi/10.1002/anie.201006734/abstract (Synthesis and Characterization of the Dicopper(II)-Containing 22-Palladate(II) [CuII2PdII22PV12O60(OH)8]20, Angewandte Chemie International Edition, DOI: 10.1002/anie.201006734)

Dr. Kristin Beck | idw
Further information:
http://onlinelibrary.wiley.com/doi/10.1002/anie.201006734/abstract
http://www.jacobs-university.de

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>