Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST's 'nano-raspberries' could bear fruit in fuel cells

10.06.2015

Researchers at the National Institute of Standards and Technology (NIST) have developed a fast, simple process for making platinum 'nano-raspberries' -- microscopic clusters of nanoscale particles of the precious metal.

The berry-like shape is significant because it has a high surface area, which is helpful in the design of catalysts. Even better news for industrial chemists: the researchers figured out when and why the berry clusters clump into larger bunches of 'nano-grapes.'

Platinum Nanoparticles

Colorized micrographs of platinum nanoparticles made at NIST. The raspberry color suggests the particles' corrugated shape, which offers high surface area for catalyzing reactions in fuel cells. Individual particles are 3 to 4 nanometers (nm) in diameter but can clump into bunches of 100 nm or more under specific conditions discovered in a NIST study.

Courtesy of Curtin/NIST

The research could help make fuel cells more practical. Nanoparticles can act as catalysts to help convert methanol to electricity in fuel cells. NIST's 40-minute process for making nano-raspberries, described in a new paper,* has several advantages. The high surface area of the berries encourages efficient reactions. In addition, the NIST process uses water, a benign or 'green' solvent. And the bunches catalyze methanol reactions consistently and are stable at room temperature for at least eight weeks.

Although the berries were made of platinum, the metal is expensive and was used only as a model. The study will actually help guide the search for alternative catalyst materials, and clumping behavior in solvents is a key issue.

For fuel cells, nanoparticles often are mixed with solvents to bind them to an electrode. To learn how such formulas affect particle properties, the NIST team measured particle clumping in four different solvents for the first time. For applications such as liquid methanol fuel cells, catalyst particles should remain separated and dispersed in the liquid, not clumped.

'Our innovation has little to do with the platinum and everything to do with how new materials are tested in the laboratory,' project leader Kavita Jeerage says. 'Our critical contribution is that after you make a new material you need to make choices. Our paper is about one choice: what solvent to use. We made the particles in water and tested whether you could put them in other solvents. We found out that this choice is a big deal.'

The NIST team measured conditions under which platinum particles, ranging in size from 3 to 4 nanometers (nm) in diameter, agglomerated into bunches 100 nm wide or larger. They found that clumping depends on the electrical properties of the solvent. The raspberries form bigger bunches of grapes in solvents that are less 'polar,' that is, where solvent molecules lack regions with strongly positive or negative charges, (water is a strongly polar molecule).

The researchers expected that. What they didn't expect is that the trend doesn't scale in a predictable way. The four solvents studied were water, methanol, ethanol and isopropanol, ordered by decreasing polarity. There wasn't much agglomeration in methanol; bunches got about 30 percent bigger than they were in water. But in ethanol and isopropanol, the clumps got 400 percent and 600 percent bigger, respectively -- really humongous bunches. This is a very poor suspension quality for catalytic purposes.

Because the nanoparticles clumped up slowly and not too much in methanol, the researchers concluded that the particles could be transferred to that solvent, assuming they were to be used within a few days -- effectively putting an expiration date on the catalyst.

###

Two college students in NIST's Summer Undergraduate Research Fellowship (SURF) program helped with the extensive data collection required for the study.

*I. Sriram, A.E. Curtin, A.N. Chiaramonti, J.H. Cuchiaro, A.D. Weidner, T.M. Tingley, L.F. Greenlee and K.M. Jeerage. Stability and phase transfer of catalytically active platinum nanoparticle suspensions. Journal of Nanoparticle Research 17:230.DOI 10.1007/s11051-015-3034-1. Published online May 22.

Laura Ost | EurekAlert!

More articles from Materials Sciences:

nachricht Glass's off-kilter harmonies
18.01.2017 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Explaining how 2-D materials break at the atomic level
18.01.2017 | Institute for Basic Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>