Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIMS Sets a New World Record for the Highest Conversion Efficiency in Dye-Sensitized Solar Cells

21.09.2011
The Photovoltaic Materials Unit of the National Institute for Materials Science set a new world record for the highest conversion efficiency in dye-sensitized solar cell under the Research Topic “Device Physics of Dye-sensitized Solar Cells”.

The unit set the record in the Research Area “Creative research for clean energy generation using solar energy” (Research Supervisor: Masafumi Yamaguchi, Principal Professor, Toyota Technological Institute Graduate School of Engineering) as part of the Core Research of Evolutional Science & Technology (CREST) program sponsored by the Japan Science and Technology Agency (JST).

The highest energy conversion efficiency in dye-sensitized solar cells had remained at 11.1% since 2006. However, in this research, the NIMS Photovoltaic Materials Unit succeeded in improving conversion efficiency to 11.4% by increasing both the cell short-circuit current density and open circuit voltage. This is the highest value was certified by the public test center (AIST, Japan).

This new world record for highest conversion efficiency in dye-sensitized solar cells was made possible by the development of a new additive material which is capable of fully demonstrating a dye-sensitizing effect. By applying this additive to dye-sensitized solar cells, it was possible to improve the external quantum efficiency of the cell in the visible light region by approximately 80% and obtain a large short-circuit current density. The open circuit voltage could also be improved simultaneously with this. The adoption of this additive, which is different from the conventional type, realized the new world record for conversion efficiency.

In the future, the Photovoltaic Materials Unit will investigate the effect of the additive on the state of dye adsorption on TiO2 and the mechanism of charge transfer in the cell in order to further improve the efficiency. The NIMS researchers are aiming at even higher conversion efficiency by developing a more effective materials based on this result.

This research achievement was announced at the 72nd Fall Meeting of the Japan Society of Applied Physics (JSAP) on August 29, 2011.

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/eng/news/press/2011/08/p201108250.html
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Strange but true: Turning a material upside down can sometimes make it softer
20.10.2017 | Universitat Autonoma de Barcelona

nachricht Metallic nanoparticles will help to determine the percentage of volatile compounds
20.10.2017 | Lomonosov Moscow State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>