Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIMS Sets a New World Record for the Highest Conversion Efficiency in Dye-Sensitized Solar Cells

21.09.2011
The Photovoltaic Materials Unit of the National Institute for Materials Science set a new world record for the highest conversion efficiency in dye-sensitized solar cell under the Research Topic “Device Physics of Dye-sensitized Solar Cells”.

The unit set the record in the Research Area “Creative research for clean energy generation using solar energy” (Research Supervisor: Masafumi Yamaguchi, Principal Professor, Toyota Technological Institute Graduate School of Engineering) as part of the Core Research of Evolutional Science & Technology (CREST) program sponsored by the Japan Science and Technology Agency (JST).

The highest energy conversion efficiency in dye-sensitized solar cells had remained at 11.1% since 2006. However, in this research, the NIMS Photovoltaic Materials Unit succeeded in improving conversion efficiency to 11.4% by increasing both the cell short-circuit current density and open circuit voltage. This is the highest value was certified by the public test center (AIST, Japan).

This new world record for highest conversion efficiency in dye-sensitized solar cells was made possible by the development of a new additive material which is capable of fully demonstrating a dye-sensitizing effect. By applying this additive to dye-sensitized solar cells, it was possible to improve the external quantum efficiency of the cell in the visible light region by approximately 80% and obtain a large short-circuit current density. The open circuit voltage could also be improved simultaneously with this. The adoption of this additive, which is different from the conventional type, realized the new world record for conversion efficiency.

In the future, the Photovoltaic Materials Unit will investigate the effect of the additive on the state of dye adsorption on TiO2 and the mechanism of charge transfer in the cell in order to further improve the efficiency. The NIMS researchers are aiming at even higher conversion efficiency by developing a more effective materials based on this result.

This research achievement was announced at the 72nd Fall Meeting of the Japan Society of Applied Physics (JSAP) on August 29, 2011.

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/eng/news/press/2011/08/p201108250.html
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Manchester scientists tie the tightest knot ever achieved
13.01.2017 | University of Manchester

nachricht CWRU directly measures how perovskite solar films efficiently convert light to power
12.01.2017 | Case Western Reserve University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>