Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIMS Sets a New World Record for the Highest Conversion Efficiency in Dye-Sensitized Solar Cells

21.09.2011
The Photovoltaic Materials Unit of the National Institute for Materials Science set a new world record for the highest conversion efficiency in dye-sensitized solar cell under the Research Topic “Device Physics of Dye-sensitized Solar Cells”.

The unit set the record in the Research Area “Creative research for clean energy generation using solar energy” (Research Supervisor: Masafumi Yamaguchi, Principal Professor, Toyota Technological Institute Graduate School of Engineering) as part of the Core Research of Evolutional Science & Technology (CREST) program sponsored by the Japan Science and Technology Agency (JST).

The highest energy conversion efficiency in dye-sensitized solar cells had remained at 11.1% since 2006. However, in this research, the NIMS Photovoltaic Materials Unit succeeded in improving conversion efficiency to 11.4% by increasing both the cell short-circuit current density and open circuit voltage. This is the highest value was certified by the public test center (AIST, Japan).

This new world record for highest conversion efficiency in dye-sensitized solar cells was made possible by the development of a new additive material which is capable of fully demonstrating a dye-sensitizing effect. By applying this additive to dye-sensitized solar cells, it was possible to improve the external quantum efficiency of the cell in the visible light region by approximately 80% and obtain a large short-circuit current density. The open circuit voltage could also be improved simultaneously with this. The adoption of this additive, which is different from the conventional type, realized the new world record for conversion efficiency.

In the future, the Photovoltaic Materials Unit will investigate the effect of the additive on the state of dye adsorption on TiO2 and the mechanism of charge transfer in the cell in order to further improve the efficiency. The NIMS researchers are aiming at even higher conversion efficiency by developing a more effective materials based on this result.

This research achievement was announced at the 72nd Fall Meeting of the Japan Society of Applied Physics (JSAP) on August 29, 2011.

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/eng/news/press/2011/08/p201108250.html
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Mat4Rail: EU Research Project on the Railway of the Future
23.02.2018 | Universität Bremen

nachricht Atomic structure of ultrasound material not what anyone expected
21.02.2018 | North Carolina State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>