Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly modified nanoparticle opens window on future gene editing technologies

25.05.2012
The scientific and technological literature is abuzz with nanotechnology and its manufacturing and medical applications. But it is in an area with a less glitzy aura-plant sciences-where nanotechnology advancements are contributing dramatically to agriculture.

Researchers at Iowa State University have now demonstrated the ability to deliver proteins and DNA into plant cells, simultaneously. This is important because it now opens up opportunities for more sophisticated and targeted plant genome editing-techniques that require the precise delivery of both protein and DNA to bring about specific gene modifications in crop plants.

Such modifications are becoming more and more important in the face of our changing climates as new insect pests, plant diseases and soil stresses emerge where previously there were few.

While DNA delivery into cells has become routine, delivering proteins and enzymes to both animal and plant cells has proved more challenging. The Iowa State team's protein delivery advancement is an important achievement toward this end.

A research paper describing the advancement has been published online by the journal Advanced Functional Materials. The work was partially sponsored by Pioneer Hi-Bred with long-term support from Iowa State University's Plant Sciences Institute.

The Iowa State research team includes Kan Wang, professor of agronomy; Brian Trewyn, associate scientist in chemistry; Susana Martin-Ortigosa, a post-doctoral research associate in agronomy; and Justin Valenstein, a chemistry doctoral student.

Nanoparticles are tiny materials that are the size equivalent of several molecules sitting side-by-side or the size of a big virus. A single nanometer is one-billionth of a meter. The virus that causes AIDS is roughly 100 nanometers in diameter.

Using new and improved custom-built honeycomb-like mesoporous silica nanoparticles that the Iowa State team designed five years ago, the researchers have demonstrated co-delivery of functional protein and DNA into plant cells.

The first generation of these customized particles were relatively small (100 nanometers) and so the available packing spaces were unable to accommodate larger functional molecules such as proteins or enzymes. This next generation is five times the size (500 nanometers) and looks something like an ultra-fine piece of Honeycomb cereal.

The key to the researchers' success is a newly devised method for making larger uniform pouches in the custom nanoparticles. An additional modification-gold plating the entire silica particle prior to packing-improved DNA and protein binding for a more secure payload.

To test the new particle's effectiveness, Wang and her colleagues loaded the pores with a green florescent protein derived from jelly fish, which serves as a photo marker inside the plant cell. Next, these particles were coated with DNA encoding a red protein from coral. The complex was then shot into plant cells using a gene gun, a traditional gene delivery method that gets foreign material past the plant's protective cell wall.

The gold plating innovation added some greatly needed ballistic heft to the particles, ensuring their ability to cannonball through the plant cell wall once released from the gene gun.

Cells that fluoresce both red and green at the same time confirm successful delivery. The team has demonstrated success in onion, tobacco and maize cells.

The work is a tangible realization of efforts the team had in the design stage just two years ago when colleague Victor Lin of Iowa State University and the U.S. Department of Energy's Ames Laboratory unexpectedly died. "He was such a brilliant scientist," says Wang. "We all felt completely lost when we lost him."

But the team pulled together, capitalizing on the excellent training all had received from working with Lin to make this next generation particle a reality.

"We would have been unable to work out anything without each other," says Wang. "This success proves his legacy continues."

Kan Wang | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>