Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ultrastiff, ultralight material developed

20.06.2014

Nanostructured material based on repeating microscopic units has record-breaking stiffness at low density.

What's the difference between the Eiffel Tower and the Washington Monument?

Both structures soar to impressive heights, and each was the world's tallest building when completed. But the Washington Monument is a massive stone structure, while the Eiffel Tower achieves similar strength using a lattice of steel beams and struts that is mostly open air, gaining its strength from the geometric arrangement of those elements.

Now engineers at MIT and Lawrence Livermore National Laboratory (LLNL) have devised a way to translate that airy, yet remarkably strong, structure down to the microscale — designing a system that could be fabricated from a variety of materials, such as metals or polymers, and that may set new records for stiffness for a given weight.

The new design is described in the journal Science by MIT's Nicholas Fang; former postdoc Howon Lee, now an assistant professor at Rutgers University; visiting research fellow Qi "Kevin" Ge; LLNL's Christopher Spadaccini and Xiaoyu "Rayne" Zheng; and eight others.

The design is based on the use of microlattices with nanoscale features, combining great stiffness and strength with ultralow density, the authors say. The actual production of such materials is made possible by a high-precision 3-D printing process called projection microstereolithography, as a result of the joint research collaboration between the Fang and Spadaccini groups since 2008.

Normally, Fang explains, stiffness and strength declines with the density of any material; that's why when bone density decreases, fractures become more likely. But using the right mathematically determined structures to distribute and direct the loads — the way the arrangement of vertical, horizontal, and diagonal beams do in a structure like the Eiffel Tower — the lighter structure can maintain its strength.

A pleasant surprise

The geometric basis for such microstructures was determined more than a decade ago, Fang says, but it took years to transfer that mathematical understanding "to something we can print, using a digital projection — to convert this solid model on paper to something we can hold in our hand." The result was "a pleasant surprise to us," he adds, performing even better than anticipated.

"We found that for a material as light and sparse as aerogel [a kind of glass foam], we see a mechanical stiffness that's comparable to that of solid rubber, and 400 times stronger than a counterpart of similar density. Such samples can easily withstand a load of more than 160,000 times their own weight," says Fang, the Brit and Alex d'Arbeloff Career Development Associate Professor in Engineering Design. So far, the researchers at MIT and LLNL have tested the process using three engineering materials — metal, ceramic, and polymer — and all showed the same properties of being stiff at light weight.

"This material is among the lightest in the world," LLNL's Spadaccini says. "However, because of its microarchitected layout, it performs with four orders of magnitude higher stiffness than unstructured materials, like aerogels, at a comparable density."

Light material, heavy loads

This approach could be useful anywhere there's a need for a combination of high stiffness (for load bearing), high strength, and light weight — such as in structures to be deployed in space, where every bit of weight adds significantly to the cost of launch. But Fang says there may also be applications at smaller scale, such as in batteries for portable devices, where reduced weight is also highly desirable.

Another property of these materials is that they conduct sound and elastic waves very uniformly, meaning they could lead to new acoustic metamaterials, Fang says, that could help control how waves bend over a curved surface.

Others have suggested similar structural principles over the years, such as a proposal last year by researchers at MIT's Center for Bits and Atoms (CBA) for materials that could be cut out as flat panels and assembled into tiny unit cells to make larger structures. But that concept would require assembly by robotic systems that have yet to be developed, says Fang, who has discussed this work with CBA researchers. This technique, he says, uses 3-D printing technology that can be implemented now.

###

The work was supported by the U.S. Defense Advanced Research Projects Agency and LLNL.

Written by David Chandler, MIT News Office

Andrew Carleen | Eurek Alert!

Further reports about: Eiffel LLNL MIT Massachusetts geometric materials projection stiffness structure waves weight

More articles from Materials Sciences:

nachricht Combining the elements palladium and ruthenium for industry
22.09.2016 | National Institute for Materials Science

nachricht Defects at the spinterface disrupt transmission
21.09.2016 | Eberhard Karls Universität Tübingen

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

How to merge two black holes in a simple way

26.09.2016 | Physics and Astronomy

Australian technology installed on world’s largest single-dish radio telescope

26.09.2016 | Physics and Astronomy

New mechanisms uncovered explaining frost tolerance in plants

26.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>