Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ultrastiff, ultralight material developed

20.06.2014

Nanostructured material based on repeating microscopic units has record-breaking stiffness at low density.

What's the difference between the Eiffel Tower and the Washington Monument?

Both structures soar to impressive heights, and each was the world's tallest building when completed. But the Washington Monument is a massive stone structure, while the Eiffel Tower achieves similar strength using a lattice of steel beams and struts that is mostly open air, gaining its strength from the geometric arrangement of those elements.

Now engineers at MIT and Lawrence Livermore National Laboratory (LLNL) have devised a way to translate that airy, yet remarkably strong, structure down to the microscale — designing a system that could be fabricated from a variety of materials, such as metals or polymers, and that may set new records for stiffness for a given weight.

The new design is described in the journal Science by MIT's Nicholas Fang; former postdoc Howon Lee, now an assistant professor at Rutgers University; visiting research fellow Qi "Kevin" Ge; LLNL's Christopher Spadaccini and Xiaoyu "Rayne" Zheng; and eight others.

The design is based on the use of microlattices with nanoscale features, combining great stiffness and strength with ultralow density, the authors say. The actual production of such materials is made possible by a high-precision 3-D printing process called projection microstereolithography, as a result of the joint research collaboration between the Fang and Spadaccini groups since 2008.

Normally, Fang explains, stiffness and strength declines with the density of any material; that's why when bone density decreases, fractures become more likely. But using the right mathematically determined structures to distribute and direct the loads — the way the arrangement of vertical, horizontal, and diagonal beams do in a structure like the Eiffel Tower — the lighter structure can maintain its strength.

A pleasant surprise

The geometric basis for such microstructures was determined more than a decade ago, Fang says, but it took years to transfer that mathematical understanding "to something we can print, using a digital projection — to convert this solid model on paper to something we can hold in our hand." The result was "a pleasant surprise to us," he adds, performing even better than anticipated.

"We found that for a material as light and sparse as aerogel [a kind of glass foam], we see a mechanical stiffness that's comparable to that of solid rubber, and 400 times stronger than a counterpart of similar density. Such samples can easily withstand a load of more than 160,000 times their own weight," says Fang, the Brit and Alex d'Arbeloff Career Development Associate Professor in Engineering Design. So far, the researchers at MIT and LLNL have tested the process using three engineering materials — metal, ceramic, and polymer — and all showed the same properties of being stiff at light weight.

"This material is among the lightest in the world," LLNL's Spadaccini says. "However, because of its microarchitected layout, it performs with four orders of magnitude higher stiffness than unstructured materials, like aerogels, at a comparable density."

Light material, heavy loads

This approach could be useful anywhere there's a need for a combination of high stiffness (for load bearing), high strength, and light weight — such as in structures to be deployed in space, where every bit of weight adds significantly to the cost of launch. But Fang says there may also be applications at smaller scale, such as in batteries for portable devices, where reduced weight is also highly desirable.

Another property of these materials is that they conduct sound and elastic waves very uniformly, meaning they could lead to new acoustic metamaterials, Fang says, that could help control how waves bend over a curved surface.

Others have suggested similar structural principles over the years, such as a proposal last year by researchers at MIT's Center for Bits and Atoms (CBA) for materials that could be cut out as flat panels and assembled into tiny unit cells to make larger structures. But that concept would require assembly by robotic systems that have yet to be developed, says Fang, who has discussed this work with CBA researchers. This technique, he says, uses 3-D printing technology that can be implemented now.

###

The work was supported by the U.S. Defense Advanced Research Projects Agency and LLNL.

Written by David Chandler, MIT News Office

Andrew Carleen | Eurek Alert!

Further reports about: Eiffel LLNL MIT Massachusetts geometric materials projection stiffness structure waves weight

More articles from Materials Sciences:

nachricht Hidden talents: Converting heat into electricity with pencil and paper
20.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie

nachricht Contacting the molecular world through graphene nanoribbons
19.02.2018 | Elhuyar Fundazioa

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>