In the wake of recent off-shore oil spills, and with the growing popularity of "fracking" — in which water is used to release oil and gas from shale — there's a need for easy, quick ways to separate oil and water.
Now, scientists have developed coatings that can do just that. Their report on the materials, which also could stop surfaces from getting foggy and dirty, appears in ACS Applied Materials & Interfaces.
J.P.S. Badyal and colleagues point out that oil-spill cleanup crews often use absorbents, like clays, straw and wool to sop up oil, but these materials aren't very efficient because they also sop up a lot of water. Extra steps and equipment also are needed to remove the oil from the absorbent, which is difficult to do on a ship.
Recently, researchers have turned their attention to new smart materials called "oleophobic-hydrophilic" coatings that instead let the water through and repel the oil.
However, the films that have been reported so far take several minutes to do the separation, are complicated to make or aren't very good at repelling oil. So, Badyal's team set out to improve these materials.
They developed oleophobic-hydrophilic coatings that they applied to pieces of metal mesh, just like what's used in screen doors. When they poured an oil-water mixture onto it, the water dripped through into the container below, while the oil remained perched atop the mesh surface.
Then, they simply tilted the mesh so the oil went into another container. The separation was instantaneous and more efficient than existing films, and it only took one step to make the coating. The team also demonstrated that it could serve as an anti-fogging and self-cleaning film.
The authors acknowledge funding from the Engineering and Physical Sciences Research Council.
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 161,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.
To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.
Michael Bernstein | Eurek Alert!
Further reports about: > ACS > Interfaces > anti-fogging coatings > coating > materials > mixture > oil-spill cleanup > surfaces
Spider silk key to new bone-fixing composite
20.04.2018 | University of Connecticut
Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model
19.04.2018 | Aalto University
University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.
Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.
Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.
Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...
Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.
The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...
Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.
Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...
In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...
Anzeige
Anzeige
Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"
13.04.2018 | Event News
Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018
12.04.2018 | Event News
IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur
09.04.2018 | Event News
Atoms may hum a tune from grand cosmic symphony
20.04.2018 | Physics and Astronomy
New research could literally squeeze more power out of solar cells
20.04.2018 | Physics and Astronomy
New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | Physics and Astronomy