Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New nanomaterial offers promise in bendable, wearable electronic devices

13.06.2016

Electroplated polymer makes transparent, highly conductive, ultrathin film

An ultrathin film that is both transparent and highly conductive to electric current has been produced by a cheap and simple method devised by an international team of nanomaterials researchers from the University of Illinois at Chicago and Korea University.


Highly conductive ultrathin film on skin between clips.

Credit: SAM YOON/KOREA UNIVERSITY

The film -- actually a mat of tangled nanofiber, electroplated to form a "self-junctioned copper nano-chicken wire" -- is also bendable and stretchable, offering potential applications in roll-up touchscreen displays, wearable electronics, flexible solar cells and electronic skin.

The finding is reported in the June 13 issue of Advanced Materials.

"It's important, but difficult, to make materials that are both transparent and conductive," says Alexander Yarin, UIC Distinguished Professor of Mechanical Engineering, one of two corresponding authors on the publication.

The new film establishes a "world-record combination of high transparency and low electrical resistance," the latter at least 10-fold greater than the previous existing record, said Sam Yoon, who is also a corresponding author and a professor of mechanical engineering at Korea University.

The film also retains its properties after repeated cycles of severe stretching or bending, Yarin said -- an important property for touchscreens or wearables.

Manufacture begins by electrospinning a nanofiber mat of polyacrylonitrile, or PAN, whose fibers are about one-hundredth the diameter of a human hair. The fiber shoots out like a rapidly coiling noodle, which when deposited onto a surface intersects itself a million times, Yarin said.

"The nanofiber spins out in a spiral cone, but forms fractal loops in flight," Yarin said. "The loops have loops, so it gets very long and very thin."

The naked PAN polymer doesn't conduct, so it must first be spatter-coated with a metal to attract metal ions. The fiber is then electroplated with copper -- or silver, nickel or gold.

The electrospinning and electroplating are both relatively high-throughput, commercially viable processes that take only a few seconds each, according to the researchers.

"We can then take the metal-plated fibers and transfer to any surface -- the skin of the hand, a leaf, or glass," Yarin said. An additional application may be as a nano-textured surface that dramatically increases cooling efficiency.

Yoon said the "self-fusion" by electroplating at the fiber junctions "dramatically reduced the contact resistance." Yarin noted that the metal-plated junctions facilitated percolation of the electric current -- and also account for the nanomaterial's physical resiliency.

"But most of it is holes," he said, which makes it 92 percent transparent. "You don't see it."

###

Co-authors include Yoon's predoctoral student Seongpil An of Korea University, Mark T. Swihart of the State University of New York at Buffalo, and others.

Funding was provided by the National Research Foundation of Korea.

Media Contact

Bill Burton
burton@uic.edu
312-996-2269

 @uicnews

http://www.uic.edu 

Bill Burton | EurekAlert!

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>