Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method allows for greater variation in band gap tunability

02.02.2015

The method can change a material's electronic band gap by up to 200 percent

If you can't find the ideal material, then design a new one.


This shows the atomic scale structure of 'designer' layered oxides: band-gap engineering is enabled by varying the sequence of the well-defined layers, seen as planes of similarly colored (green and purple) atoms, in transition metal oxides without changing the materials overall chemical composition.

Credit: James Rondinelli

Northwestern University's James Rondinelli uses quantum mechanical calculations to predict and design the properties of new materials by working at the atom-level. His group's latest achievement is the discovery of a novel way to control the electronic band gap in complex oxide materials without changing the material's overall composition. The finding could potentially lead to better electro-optical devices, such as lasers, and new energy-generation and conversion materials, including more absorbent solar cells and the improved conversion of sunlight into chemical fuels through photoelectrocatalysis.

"There really aren't any perfect materials to collect the sun's light," said Rondinelli, assistant professor of materials science and engineering in the McCormick School of Engineering. "So, as materials scientists, we're trying to engineer one from the bottom up. We try to understand the structure of a material, the manner in which the atoms are arranged, and how that 'genome' supports a material's properties and functionality."

The electronic band gap is a fundamental material parameter required for controlling light harvesting, conversion, and transport technologies. Via band-gap engineering, scientists can change what portion of the solar spectrum can be absorbed by a solar cell, which requires changing the structure or chemistry of the material.

Current tuning methods in non-oxide semiconductors are only able to change the band gap by approximately one electronvolt, which still requires the material's chemical composition to become altered. Rondinelli's method can change the band gap by up to 200 percent without modifying the material's chemistry. The naturally occurring layers contained in complex oxide materials inspired his team to investigate how to control the layers. They found that by controlling the interactions between neutral and electrically charged planes of atoms in the oxide, they could achieve much greater variation in electronic band gap tunability.

"You could actually cleave the crystal and, at the nanometer scale, see well-defined layers that comprise the structure," he said. "The way in which you order the cations on these layers in the structure at the atomic level is what gives you a new control parameter that doesn't exist normally in traditional semiconductor materials."

By tuning the arrangement of the cations--ions having a net positive, neutral, or negative charge--on these planes in proximity to each other, Rondinelli's team demonstrated a band gap variation of more than two electronvolts. "We changed the band gap by a large amount without changing the material's chemical formula," he said. "The only difference is the way we sequenced the 'genes' of the material."

Supported by DARPA and the US Department of Energy, the research is described in the paper "Massive band gap variation in layered oxides through cation ordering," published in the January 30 issue of Nature Communications. Prasanna Balachandran of Los Alamos National Laboratory in New Mexico is coauthor of the paper.

Arranging oxide layers differently gives rise to different properties. Rondinelli said that having the ability to experimentally control layer-by-layer ordering today could allow researchers to design new materials with specific properties and purposes. The next step is to test his computational findings experimentally.

Rondinelli's research is aligned with President Barack Obama's Materials Genome Initiative, which aims to accelerate the discovery of advanced materials to address challenges in energy, healthcare, and transportation.

"Today it's possible to create digital materials with atomic level precision," Rondinelli said. "The space for exploration, however, is enormous. If we understand how the material behavior emerges from building blocks, then we make that challenge surmountable and meet one of the greatest challenges today--functionality by design."

Megan Fellman | EurekAlert!

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>