Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New measurement method for materials subjected to high thermal and mechanical loads

17.07.2017

Materials for light construction and high-temperature applications first have to be qualified before use in order to be able to utilize them to their full potential. The fatigue tests necessary for this purpose can now be performed with a newly developed optical strain measurement system with significantly faster test frequencies without the use of conventional, contacting measurement systems which lead to unwanted damage to test specimens. The versatile process developed by the Fraunhofer IWM and IPM combines the advantages of previous optical and mechanical measuring methods.

High-performance materials improve the function and extend the application range of machines and systems, such as in light construction and high-temperature applications in the automotive industry, in power plants or in aircraft engines. However, components based on high-performance materials have to be qualified in each case in order to ensure the resilience and safety of the subsequent product.


Cyclical fatigue test at 1000 °C with tactile and optical strain sensor.

Foto: Fraunhofer IWM, Fraunhofer IPM

In view of the mechanical properties and the service life behavior, they occur, for example, with high-frequency fatigue tests under a cyclic, recurrent load. These measurements place high demands on the measuring speed of the strain measurement systems which are used.

Now, researchers at the Fraunhofer Institute for Mechanics of Materials IWM and the Fraunhofer Institute for Physical Measurement Techniques IPM have succeeded in increasing by a factor of ten the measuring speed for the non-contact strain measurement as part of fatigue tests.

No-contact, mark-free strain measurement

Optical strain measurement systems are non-contact and therefore do not affect the sample; this advantage already applies to conventional optical systems. Their biggest disadvantage, though, is their slow image processing speed, which limits the measuring and, therefore, the control frequency. Such high measuring rates are a prerequisite for the optical strain control with which scientists at both institutes currently are intensively working.

High control and measuring frequencies have so far only been achieved in fatigue tests with tactile extensometers: the pressure force of the extensometer rods which is necessary in this process can lead to unwanted damage to the sample and thus, to a falsification of the measurement results, particularly under test conditions in the area of the material load limit.

The new optical measuring system uses fast, modern image processing technologies for the first time to combine the advantages of tactile and optical extensometers: fast, high-resolution cameras reliably record surface structures, even on polished samples, and use these structures as natural markers in image processing. This eliminates the complex sample preparation for the application of artificial markers.

Evaluation with 1000 Hz

By parallelized image evaluation on graphics cards, the strain can be measured without contact at more than 1000 Hz – previously with optical systems, only measuring rates up to 100 Hz were possible. The measuring accuracy of the new Fraunhofer strain measurement system corresponds to Class 0.5 pursuant to DIN ISO 9513.

The size of the image field can be adapted to the test task; in the future, the real-time evaluation will also allow expansion-controlled experiments in the micro- and macro-range. The optical measurement system will also offer the possibility of further image processing analyses. The will, for example, enable the damage development to be analyzed both in real-time or subsequently. In this way, project partners receive higher accuracy measurement data for even more precise predictions of the component lifetime.

Contact:
Stefan Eckmann, Phone +49 761 5142-335, stefan.eckmann@iwm.fraunhofer.de
Uwe Strohmeier, Phone +49 761 5142-342, uwe.strohmeier@iwm.fraunhofer.de

Katharina Hien | Fraunhofer-Institut für Werkstoffmechanik IWM
Further information:
http://www.iwm.fraunhofer.de/

More articles from Materials Sciences:

nachricht Let the good tubes roll
19.01.2018 | DOE/Pacific Northwest National Laboratory

nachricht Method uses DNA, nanoparticles and lithography to make optically active structures
19.01.2018 | Northwestern University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>