Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New material could make aircraft deicers a thing of the past

16.03.2016

Instead of applying a deicing agent to strip ice from an aircraft's wings before stormy winter takeoffs, airport personnel could in the future just watch chunks slide right off without lifting a finger. Scientists report they have developed a liquid-like substance that can make wings and other surfaces so slippery that ice cannot adhere. The slick substance is secreted from a film on the wing's surface as temperatures drop below freezing and retreats back into the film as temperatures rise.

The researchers present their work today at the 251st National Meeting & Exposition of the American Chemical Society (ACS). ACS, the world's largest scientific society, is holding the meeting here through Thursday. It features more than 12,500 presentations on a wide range of science topics.


SLUGs coatings on the right three panels at a test station repel snow and ice, but snow builds up on an untreated panel (far left).

Credit: Chihiro Urata

The liquid-secreting materials the researchers developed are called self-lubricating organogels, or SLUGs. "The SLUGs technology has a host of formulations and applications, including in a gel form that can be encapsulated in a film coating on the surface of a wing or other device," says research director Atsushi Hozumi, Ph.D.

"We came upon this idea when we observed real slugs in the environment," Chihiro Urata, Ph.D., explains. "Slugs live underground in soils when it is daytime and crawl out at night. But we never see slugs covered in dirt. They secrete a liquid mucus on their skin, which repels dirt, and the dirt slides off. From this, we started focusing on the phenomenon called syneresis, the expulsion of liquid from a gel."

... more about:
»ACS »coating »liquids »physical effects

The gel and the liquid-repellent substance are held in a matrix of silicone resin. The mix is cured and applied to a surface as a nearly transparent and solid film coating, Urata explains. Both Urata and Hozumi are at the National Institute of Advanced Industrial Science & Technology (Japan).

The team examined the anti-icing properties of several types of organogels under tests at various temperatures, Urata says. The discovery of the material's thermo-responsive secretion properties was an unexpected surprise. The tests also showed that the secretion was a reversible process. The syneresis gradually starts when temperatures fall below freezing. So although ice can still form, it cannot adhere to the surface and it slips off. Once the temperature rises above freezing, the liquids return back to the film.

Urata sees potential applications for SLUGs beyond aircraft and singles out antifouling coatings in packaging, paints, ship bottoms, metal molds and more.

Their research is currently focusing on increasing the transparency of the SLUG's coating, Urata says. "We are planning a short-term project to apply the coating where transparency is essential. For example, we are just beginning a project to field-test the durability and visibility of SLUGs coating on signage in Japan's northern counties."

###

Their research is funded through a grant-in-aid for scientific research on innovative areas from the Japanese Ministry of Education, Culture, Sports, Science and Technology.

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 158,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Note to journalists: Please report that this research is being presented at a meeting of the American Chemical Society.

Follow us: Twitter | Facebook

Title

Anti-Stick Coatings Using Self-Lubricating Organogels (SLUGs)

Abstract

Functional coatings with exceptional surface properties, such as liquid-repellency and low-friction/adhesion, have been commonly prepared by combining textured surfaces with long-chain perfluorinated compounds. However, unfortunately, the chemical and physical effects of the LPFCs on human health and environment have been viewed lately with concern. In addition, once such artificial surfaces are physically and chemically damaged, they permanently lose their surface properties. In contrast, some living things maintain their surface properties through secretion of plant waxes and mucus. Here, we report on novel coatings inspired by such biological systems. To realize long-lasting surface properties, we have particularly focused on the syneresis of organogels, which were prepared by hydrosilylation of 2 types of silicones, and several guest organic liquids. As compatibility between guest liquids and polymer matrixes (cross-linked polydimethylsiloxane) is decreased to a certain critical point which is induced by the chemical and/or physical effects, the guest liquids begins to gradually leach out to the outmost organogel surface. Thanks to this self-lubricating property, adhesion of various objects was effectively reduced, resulting in the excellent anti-sticking properties. Viscous liquids flowed on the syneretic organogel surface more freely than that of non-syneretic organogel surface. For the purpose of anti-icing applications, we tuned the critical incompatibility point our organogels, which possess reversible thermo-responsive secretion nature. In this case, the syneresis gradually starts when the temperature is cooled (< 0°C) and the syneresis liquids returns back into the organogel again by heating to room temperature. Thanks to this smart surface property, an ice-pillar formed on the organogel at -15°C easily slid off without any additional force. Furthermore, we have successfully demonstrated regeneration of superhydrophobicity artificially mimicking lotus leaves using n-octadecyltrichlorosilane as an active guest liquid. Our technique, demonstrated here, undoubtedly shows great potential for application in dynamic, multifunctional, and self-recovering coatings.

Media Contact

619-525-6215 (San Diego Press Center, March 13-16)

Michael Bernstein
202-872-6042 (D.C. Office)
301-275-3221 (Cell)
m_bernstein@acs.org

Katie Cottingham, Ph.D.
301-775-8455 (Cell)
k_cottingham@acs.org

@ACSpressroom
http://www.acs.org

Michael Bernstein | EurekAlert!

Further reports about: ACS coating liquids physical effects

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>