Building lightly in an efficient manner
Together with three companies the Institute for Aircraft Construction (IFB) at the University of Stuttgart researched the automated conversion of components for aeronautical applications with a high lightweight potential, such as for example structures of aircraft seats or reinforcements of window frames.
The efficiency of the automation process as well as the quality and functionality of the products resulting from this is to be increased through a number of further developments. The objective of the project going by the name of “3D TFP“ is the material-efficient manufacturing of the products as well as a sustainable reduction in CO2 emissions in flight operations.
In order to achieve this, the partners use a manufacturing process with which the expensive carbon fibres can be arranged almost without offcuts and with a good load-bearing capacity in the component (Tailored Fibre Placement, in brief TFP process). Since an effective and to date quick deposit of the fibres has only been possible on the flat side, a reliable method to convert these semi-finished products is to be developed into a complex 3D structure.
The focus thereby is an automated and resource-efficient production of aeronautical components that on the one hand reduces the process tolerances and on the other hand the overall process costs. With this the door to production would be opened in a high-wage country like Germany. Furthermore, the scientists wish to integrate additional functions such as, for example conductive or sensory elements in the component. These added values are to justify the higher manufacturing costs compared to the classic metal construction and increase the market opportunities of the end product.
Alongside the IFB at the University of Stuttgart as the main developer, the consortium comprises the manufacturer of aircraft seats RECARO Aircraft Seating in Schwäbisch Hall, the synthetic resin manufacturer Sika Deutschland in Bad Urach and the process automation supplier Siemens from Stuttgart. Within three years the partners jointly intend to press ahead with the automated manufacturing of low cut-off waste semi-finished products to manufacture lightweight parts from fibre plastic composites. The project is being funded with a sum of 321,000.- Euros by the State of Baden-Württemberg in the framework of the strategy for the lightweight construction.
Further information:
Prof. Peter Middendorf, University of Stuttgart, Institute for Light Aircraft, Tel.: 0711/ 685-62411, email: peter.middendorf (at) ifb.uni-stuttgart.de
Andrea Mayer-Grenu, University of Stuttgart, Department of University Communication, Tel. 0711/685-82176, email: andrea.mayer-grenu (at) hkom.uni-stuttgart.de
Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-stuttgart.de/
Spider silk key to new bone-fixing composite
20.04.2018 | University of Connecticut
Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model
19.04.2018 | Aalto University
University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.
Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.
Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.
Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...
Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.
The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...
Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.
Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...
In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...
Anzeige
Anzeige
Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"
13.04.2018 | Event News
Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018
12.04.2018 | Event News
IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur
09.04.2018 | Event News
Magnetic nano-imaging on a table top
20.04.2018 | Physics and Astronomy
Start of work for the world's largest electric truck
20.04.2018 | Interdisciplinary Research
Atoms may hum a tune from grand cosmic symphony
20.04.2018 | Physics and Astronomy