Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New gel to promote bone growth on implants used in surgical procedures

31.03.2014

A research group at Uppsala University, Sweden has developed a new responsive coating for implants used in surgery to improve their integration into bone and to prevent rejection.

Neutron scattering experiments at the Institut Laue-Langevin (ILL) in Grenoble, France have shown how a protein that promotes bone growth binds to this surface and can be released in a controlled way.


A gel coated titanium surface binds proteins which promote bone formation.

Credit: Ida Berts

Orthopaedic and dental implants must last for many years. Success for these surgical components depends on integration into adjacent bone tissue. Gels made by modifying hyaluronan, a large biological molecule, can be used to coat implants. A new paper in Advanced Engineering Materials shows that the coated titanium surfaces can bind protein molecules which promote bone formation. These can be released slowly once the surface comes in contact with a solution of calcium ions. This process would stimulate the growth of bone on the implant.

The gel layers, a few millionths of a millimetre thick, were characterised using neutron reflection at the ILL, a technique that provides a detailed picture of what happens at a surface.

In their new paper the research team showed that the protein, BMP-2, that encourages bone growth was bound to the gel. They also demonstrated that the layer of protein was stable in water but could be released slowly by adding solutions containing calcium, a process that was observed in real time using neutron reflection to track the amount of protein at the surface.

The research group has now launched trials of similar materials for metal implants in rabbits. These ongoing studies are made in collaboration with the Swedish Agricultural University in Uppsala and they provide a step towards transfer of the results to clinical applications.

'Interdisciplinary research and partnerships allow advanced analytical tools to be applied to important but difficult medical and scientific challenges. This exciting work comes from shared goals of chemists and physicists as well as the Centre for Neutron Scattering at Uppsala University and the laboratories in Grenoble', says Professor Adrian Rennie.

'We envisage that the materials will be used in medicine to modulate the healing process in bone', says Associate Professor Dmitri Ossipov. He continues, 'Neutrons are an ideal tool to understand the interactions of metal surfaces, polysaccharide biopolymers, and proteins thanks to a contrast matching technique that highlights only the protein components at the interface.'

'Neutron scattering techniques are increasingly relevant to optimise bio-materials and to study systems that relate to health. The importance of combining conventional laboratory studies with those at a large scale facility to give a complete picture of a process was proven once more. This work arose from a studentship funded by the Institut Laue-Langevin which makes us proud of our PhD programme.' says Dr Giovanna Fragneto from the Institut Laue-Langevin.

###

For more information, please contact Adrian Rennie, tel:+46 (0)70-4250914, +46 (0)18-471 3596, e-mail: Adrian.Rennie@physics.uu.se or Ida Berts, tel: +49-(0)89 2180 2439, e-mail: Ida.Berts@physik.uni-muenchen.de

Berts, D. Ossipov, G. Fragneto, A. Frisk, A.R. Rennie, 'Polymeric smart coating strategy for titanium implants', Advanced Engineering Materials (2014).

Adrian Rennie | EurekAlert!
Further information:
http://www.uu.se

Further reports about: Engineering ILL Neutron Uppsala coating implants materials surfaces technique titanium

More articles from Materials Sciences:

nachricht Thanks for the memory: NIST takes a deep look at memristors
22.01.2018 | National Institute of Standards and Technology (NIST)

nachricht Let the good tubes roll
19.01.2018 | DOE/Pacific Northwest National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>