Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New gel to promote bone growth on implants used in surgical procedures

31.03.2014

A research group at Uppsala University, Sweden has developed a new responsive coating for implants used in surgery to improve their integration into bone and to prevent rejection.

Neutron scattering experiments at the Institut Laue-Langevin (ILL) in Grenoble, France have shown how a protein that promotes bone growth binds to this surface and can be released in a controlled way.


A gel coated titanium surface binds proteins which promote bone formation.

Credit: Ida Berts

Orthopaedic and dental implants must last for many years. Success for these surgical components depends on integration into adjacent bone tissue. Gels made by modifying hyaluronan, a large biological molecule, can be used to coat implants. A new paper in Advanced Engineering Materials shows that the coated titanium surfaces can bind protein molecules which promote bone formation. These can be released slowly once the surface comes in contact with a solution of calcium ions. This process would stimulate the growth of bone on the implant.

The gel layers, a few millionths of a millimetre thick, were characterised using neutron reflection at the ILL, a technique that provides a detailed picture of what happens at a surface.

In their new paper the research team showed that the protein, BMP-2, that encourages bone growth was bound to the gel. They also demonstrated that the layer of protein was stable in water but could be released slowly by adding solutions containing calcium, a process that was observed in real time using neutron reflection to track the amount of protein at the surface.

The research group has now launched trials of similar materials for metal implants in rabbits. These ongoing studies are made in collaboration with the Swedish Agricultural University in Uppsala and they provide a step towards transfer of the results to clinical applications.

'Interdisciplinary research and partnerships allow advanced analytical tools to be applied to important but difficult medical and scientific challenges. This exciting work comes from shared goals of chemists and physicists as well as the Centre for Neutron Scattering at Uppsala University and the laboratories in Grenoble', says Professor Adrian Rennie.

'We envisage that the materials will be used in medicine to modulate the healing process in bone', says Associate Professor Dmitri Ossipov. He continues, 'Neutrons are an ideal tool to understand the interactions of metal surfaces, polysaccharide biopolymers, and proteins thanks to a contrast matching technique that highlights only the protein components at the interface.'

'Neutron scattering techniques are increasingly relevant to optimise bio-materials and to study systems that relate to health. The importance of combining conventional laboratory studies with those at a large scale facility to give a complete picture of a process was proven once more. This work arose from a studentship funded by the Institut Laue-Langevin which makes us proud of our PhD programme.' says Dr Giovanna Fragneto from the Institut Laue-Langevin.

###

For more information, please contact Adrian Rennie, tel:+46 (0)70-4250914, +46 (0)18-471 3596, e-mail: Adrian.Rennie@physics.uu.se or Ida Berts, tel: +49-(0)89 2180 2439, e-mail: Ida.Berts@physik.uni-muenchen.de

Berts, D. Ossipov, G. Fragneto, A. Frisk, A.R. Rennie, 'Polymeric smart coating strategy for titanium implants', Advanced Engineering Materials (2014).

Adrian Rennie | EurekAlert!
Further information:
http://www.uu.se

Further reports about: Engineering ILL Neutron Uppsala coating implants materials surfaces technique titanium

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>