Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New 'designer carbon' from Stanford boosts battery performance

01.06.2015

Stanford University scientists have created a new carbon material that significantly boosts the performance of energy-storage technologies. Their results are featured on the cover of the journal ACS Central Science.

"We have developed a 'designer carbon' that is both versatile and controllable," said Zhenan Bao, the senior author of the study and a professor of chemical engineering at Stanford. "Our study shows that this material has exceptional energy-storage capacity, enabling unprecedented performance in lithium-sulfur batteries and supercapacitors."


This image shows designer carbon improving energy storage.

Credit: John To and Zheng Chen, Stanford University

According to Bao, the new designer carbon represents a dramatic improvement over conventional activated carbon, an inexpensive material widely used in products ranging from water filters and air deodorizers to energy-storage devices.

"A lot of cheap activated carbon is made from coconut shells," Bao said. "To activate the carbon, manufacturers burn the coconut at high temperatures and then chemically treat it."

The activation process creates nanosized holes, or pores, that increase the surface area of the carbon, allowing it to catalyze more chemical reactions and store more electrical charges.

But activated carbon has serious drawbacks, Bao said. For example, there is little interconnectivity between the pores, which limits their ability to transport electricity.

"With activated carbon, there's no way to control pore connectivity," Bao said. "Also, lots of impurities from the coconut shells and other raw starting materials get carried into the carbon. As a refrigerator deodorant, conventional activated carbon is fine, but it doesn't provide high enough performance for electronic devices and energy-storage applications."

3-D networks

Instead of using coconut shells, Bao and her colleagues developed a new way to synthesize high-quality carbon using inexpensive - and uncontaminated - chemicals and polymers.

The process begins with conducting hydrogel, a water-based polymer with a spongy texture similar to soft contact lenses.

"Hydrogel polymers form an interconnected, three-dimensional framework that's ideal for conducting electricity," Bao said. "This framework also contains organic molecules and functional atoms, such as nitrogen, which allow us to tune the electronic properties of the carbon."

For the study, the Stanford team used a mild carbonization and activation process to convert the polymer organic frameworks into nanometer-thick sheets of carbon.

"The carbon sheets form a 3-D network that has good pore connectivity and high electronic conductivity," said graduate student John To, a co-lead author of the study. "We also added potassium hydroxide to chemically activate the carbon sheets and increase their surface area."

The result: designer carbon that can be fine-tuned for a variety of applications.

"We call it designer carbon because we can control its chemical composition, pore size and surface area simply by changing the type of polymers and organic linkers we use, or by adjusting the amount of heat we apply during the fabrication process," To said.

For example, raising the processing temperature from 750 degrees Fahrenheit (400 degrees Celsius) to 1,650 F (900 C) resulted in a 10-fold increase in pore volume.

Subsequent processing produced carbon material with a record-high surface area of 4,073 square meters per gram - the equivalent of three American football fields packed into an ounce of carbon. The maximum surface area achieved with conventional activated carbon is about 3,000 square meters per gram.

"High surface area is essential for many applications, including electrocatalysis, storing energy and capturing carbon dioxide emissions from factories and power plants," Bao said.

Supercapacitors

To see how the new material performed in real-world conditions, the Stanford team fabricated carbon-coated electrodes and installed them in lithium-sulfur batteries and supercapacitors.

"Supercapacitors are energy-storage devices widely used in transportation and electronics because of their ultra-fast charging and discharging capability," said postdoctoral scholar Zheng Chen, a co-lead author. "For supercapacitors, the ideal carbon material has a high surface area for storing electrical charges, high conductivity for transporting electrons and a suitable pore architecture that allows for the rapid movement of ions from the electrolyte solution to the carbon surface."

In the experiment, a current was applied to supercapacitors equipped with designer-carbon electrodes.

The results were dramatic. Electrical conductivity improved threefold compared to supercapacitor electrodes made of conventional activated carbon.

"We also found that our designer carbon improved the rate of power delivery and the stability of the electrodes," Bao added.

Batteries

Tests were also conducted on lithium-sulfur batteries, a promising technology with a serious flaw: When lithium and sulfur react, they produce molecules of lithium polysulfide, which can leak from the electrode into the electrolyte and cause the battery to fail.

The Stanford team discovered that electrodes made with designer carbon can trap those pesky polysulfides and improve the battery's performance.

"We can easily design electrodes with very small pores that allow lithium ions to diffuse through the carbon but prevent the polysulfides from leaching out," Bao said. "Our designer carbon is simple to make, relatively cheap and meets all of the critical requirements for high-performance electrodes."

###

Other Stanford co-authors of the study are graduate student Jiajun He; postdoctoral scholars Hongbin Yao, Kwanpyo Kim and Ho-Hsiu Chou; visiting scholar Lijia Pan, and professors Jennifer Wilcox and Yi Cui.

Media Contact

Mark Shwartz
mshwartz@stanford.edu
650-723-9296

 @stanford

http://news.stanford.edu/ 

Mark Shwartz | EurekAlert!

More articles from Materials Sciences:

nachricht Strange but true: Turning a material upside down can sometimes make it softer
20.10.2017 | Universitat Autonoma de Barcelona

nachricht Metallic nanoparticles will help to determine the percentage of volatile compounds
20.10.2017 | Lomonosov Moscow State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>