Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NC State researchers create 'nanofiber gusher'

19.03.2015

Report method of fabricating larger amounts of nanofibers in liquid

Creating large amounts of polymer nanofibers dispersed in liquid is a challenge that has vexed researchers for years. But engineers and researchers at North Carolina State University and one of its start-up companies have now reported a method that can produce unprecedented amounts of polymer nanofibers, which have potential applications in filtration, batteries and cell scaffolding.


NC State researchers use shearing method to create polymer nanofibers in liquid.

Photo courtesy of Orlin Velev, NC State University

In a paper published online in Advanced Materials, the NC State researchers and colleagues from industry, including NC State start-up company Xanofi, describe the method that allows them to fabricate polymer nanofibers on a massive scale.

The method - fine-tuned after nearly a decade of increasing success in producing micro- and nanoparticles of different shapes - works as simply as dropping liquid solution of a polymer in a beaker containing a spinning cylinder. Glycerin - a common and safe liquid that has many uses - is used to shear the polymer solution inside the beaker along with an antisolvent like water. When you take out the rotating cylinder, says Dr. Orlin Velev, Invista Professor of Chemical and Biomolecular Engineering at NC State and the corresponding author of the paper describing the research, you find a mat of nanofibers wrapped around it.

When they first started investigating the liquid shearing process, the researchers created polymer microrods, which could have various useful applications in foams and consumer products. "However, while investigating the shear process we came up with something strange. We discovered that these rods were really just pieces of 'broken' fibers," Velev said. "We didn't quite have the conditions set perfectly at that time. If you get the conditions right, the fibers don't break."

NC State patented the liquid shear process in 2006 and in a series of subsequent patents while Velev and his colleagues continued to work to perfect the process and its outcome. First, they created microfibers and nanoribbons as they investigated the process. "Microfibers, nanorods and nanoribbons are interesting and potentially useful, but you really want nanofibers," Velev said. "We achieved this during the scaling up and commercialization of the technology."

Velev engaged with NC State's Office of Technology Transfer and the university's TEC (The Entrepreneurship Collaborative) program to commercialize the discoveries. They worked with the experienced entrepreneur Miles Wright to start a company called Xanofi to advance the quest for nanofibers and the most efficient way to make mass quantities of them.

"We can now create kilograms of nanofibers per hour using this simple continuous flow process, which when scaled up becomes a 'nanofiber gusher,'" Velev said. "Depending on the concentrations of liquids, polymers and antisolvents, you can create multiple types of nanomaterials of different shapes and sizes."

"Large quantities are paramount in nanomanufacturing, so anything scalable is important," said Wright, the CEO of Xanofi and a co-author on the paper. "When we produce the nanofibers via continuous flow, we get exactly the same nanofibers you would get if you were producing small quantities of them. The fabrication of these materials in liquid is advantageous because you can create truly three-dimensional nanofiber substrates with very, very high overall surface area. This leads to many enhanced products ranging from filters to cell scaffolds, printable bioinks, battery separators, plus many more."

###

The research was funded by the National Science Foundation's Accelerating Innovation Research program. NC State's researchers Stoyan Smoukov, Tian Tian and Eunkyoung Shim co-authored the paper, as did Narendiran Vitchuli, Sumit Gangwal, Miles Wright and Pete Geisen from Xanofi Inc.; Manuel Marquez from Ynano Llc.; and Jeffrey Fowler from Syngenta Co.

Note to editors: An abstract of the paper follows.

"Scalable Liquid Shear-Driven Fabrication of Polymer Nanofibers"

Authors: Stoyan Smoukov, Tian Tian, Eunkyoung Shim and Orlin Velev, North Carolina State University; Narendiran Vitchuli, Sumit Gangwal, Miles Wright and Pete Geisen, Xanofi Inc.; Manuel Marquez, Ynano Llc.; and Jeffrey Fowler, Syngenta Co.

Published: March 18, 2015, online in Advanced Materials

DOI: 10.1002/adma.201404616

Abstract: A simple process for batch or continuous formation of polymer nanofibers and other nanomaterials in the bulk of a sheared fluid medium is introduced. The process could be of high value to commercial nanotechnology as it can be easily scaled up to the fabrication of staple nanofibers at rates that could exceed tens of kilograms per hour.

Media Contact

Dr. Orlin Velev
odvelev@ncsu.edu
919-513-4318

 @NCStateNews

http://www.ncsu.edu 

Dr. Orlin Velev | EurekAlert!

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>