Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature Materials: Quick-cooking nanomaterials in microwave to make tomorrow's air conditioners

11.01.2012
Engineers at Rensselaer Polytechnic Institute Develop New Method for Creating Better Thermoelectric Materials in Large Batches

Engineering researchers at Rensselaer Polytechnic Institute have developed a new method for creating advanced nanomaterials that could lead to highly efficient refrigerators and cooling systems requiring no refrigerants and no moving parts. The key ingredients for this innovation are a dash of nanoscale sulfur and a normal, everyday microwave oven.

At the heart of these solid-state cooling systems are thermoelectric materials, which can convert electricity into a range of different temperatures—from hot to cold. Thermoelectric refrigerators employing these principles have been available for more than 20 years, but they are still small and highly inefficient. This is largely because the materials used in current thermoelectric cooling devices are expensive and difficult to make in large quantities, and do not have the necessary combination of thermal and electrical properties. A new study, published today in the journal Nature Materials, overcomes these challenges and opens the door to a new generation of high-performance, cost-effective solid state refrigeration and air conditioning.

Rensselaer Professor Ganpati Ramanath led the study, in collaboration with colleagues Theodorian Borca-Tasciuc and Richard W. Siegel.

See a video of Ramanath explaining the study at: http://www.youtube.com/user/rpirensselaer?feature=mhee#p/u/12/hgmBwg3FeS4

Driving this research breakthrough is the idea of intentionally contaminating, or doping, nanostructured thermoelectric materials with barely-there amounts of sulfur. The doped materials are obtained by cooking the material and the dopant together for few minutes in a store-bought $40 microwave oven. The resulting powder is formed into pea-sized pellets by applying heat and pressure in a way that preserves the properties endowed by the nanostructuring and the doping. These pellets exhibit properties better than the hard-to-make thermoelectric materials currently available in the marketplace. Additionally, this new method for creating the doped pellets is much faster, easier, and cheaper than conventional methods of making thermoelectric materials.

“This is not a one-off discovery. Rather, we have developed and demonstrated a new way to create a whole new class of doped thermoelectric materials with superior properties,” said Ramanath, a faculty member in the Department of Materials Science and Engineering at Rensselaer. “Our findings truly hold the potential to transform the technology landscape of refrigeration and make a real impact on our lives.”

Results of the study are detailed in the Nature Materials paper “A new class of doped nanobulk high figure of merit thermoelectrics by scalable bottom-up assembly.” See the paper online at: http://dx.doi.org/10.1038/NMAT3213

Trying to engineer thermoelectric materials is somewhat like playing a game of “tug of war,” Ramanath said. Researchers endeavor to control three separate properties of the material: electrical conductivity, thermal conductivity, and Seebeck coefficient. Manipulating one of these properties, however, necessarily affects the other two. This new study demonstrates a new way to minimize the interdependence of these three properties by combining doping and nanostructuring in well-known thermoelectric materials such as tellurides and selenides based on bismuth and antimony.

The goal of tweaking these three properties is to create a thermoelectric material with a high figure of merit, or ZT, which is a measure of how efficient the material is at converting heat to electricity. The new pea-sized pellets of nanomaterials developed by the Rensselaer team demonstrated a ZT of 1 to 1.1 at room temperature. Since such high values are obtained even without optimizing the process, the researchers are confident that higher ZT can be obtained with some smart engineering.

“It’s really amazing as to how nanostructures seasoned with just a few atoms of sulfur can lead to such superior thermoelectric properties of the bulk material made from the nanostructures, and allows us to reap the benefits of nanostructuring on a macroscale,” Ramanath said.

An important facet of the discovery is the ability to make both p-type (positive charge) and n-type (negative charge) thermoelectric nanomaterials with a high ZT. Up until now, researchers around the world have only been able to make large quantities of p-type materials with high ZT.

Additionally, the new study shows the Rensselaer research team can make batches of 10 to 15 grams (enough to make several pea-sized pellets) of the doped nanomaterial in two to three minutes with a microwave oven. Larger quantities can be produced using industrial-sized microwaves ovens.

“Our ability to scalably and inexpensively produce both p- and n-type materials with a high ZT paves the way to the fabrication of high-efficiency cooling devices, as well as solid-state thermoelectric devices for harvesting waste heat or solar heat into electricity,” said Borca-Tasciuc, professor in the Department of Mechanical, Aerospace, and Nuclear Engineering at Rensselaer.

“This is a very exciting discovery because it combines the realization of novel and useful thermoelectric properties with a demonstrated processing route forward to industrial applications,” said Siegel, the Robert W. Hunt Professor of Materials Science and Engineering at Rensselaer.

Rensselaer graduate student Rutvik J. Mehta carried out this work for his doctoral thesis. Mehta, Ramanath, and Borca-Tasciuc have filed a patent and formed a new company, ThermoAura Inc., to further develop and market the new thermoelectric materials technology. Mehta has since graduated and is now a post-doctoral associate at Rensselaer. He also serves as president of ThermoAura.

Beyond refrigerators and air conditioning, the researchers envision this technology could one day be used to cool computer chips.

Along with Ramanath,Borca-Tasciuc, Siegel, and Mehta, co-authors of the paper are Rensselaer graduate students Yanliang Zhang, Chinnathambi Karthik, and Binay Singh.

This research is funded by support from the National Science Foundation (NSF); IBM through the Rensselaer Nanotechnology Center; and the U.S. Department of Energy through the S3TEC Energy Frontiers Research Center at the Massachusetts Institute of Technology (MIT).

For more information on the research of Ramanath, Borca-Tasciuc, and Siegel at Rensselaer, visit:

Faculty Home Page – Ramanath
http://homepages.rpi.edu/~ganapr/
Faculty Home Page – Borca-Tasciuc
http://nanotec.meche.rpi.edu/
Faculty Home Page – Siegel
http://mse.rpi.edu/faculty_details.cfm?facultyID=sieger
“Nanosculpture” Could Enable New Types of Heat Pumps and Energy Converters
http://news.rpi.edu/update.do?artcenterkey=2471
Inexpensive “Nanoglue” Can Bond Nearly Anything Together
http://news.rpi.edu/update.do?artcenterkey=2154
Water Could Hold Answer to Graphene Nanoelectronics
http://news.rpi.edu/update.do?artcenterkey=2783
Professor-Turned-Producer Learns the Movie Biz
http://news.rpi.edu/update.do?artcenterkey=2490
Contact: Michael Mullaney
Phone: (518) 276-6161
E-mail: mullam@rpi.edu

Michael Mullaney | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>