Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Nature Materials”: Controlling magnetism with electric fields

23.08.2011
“Nature Materials”: new multiferroic material developed
RUB-researchers make high-precision measurement possible with X-ray scattering

An international team of researchers from France and Germany has developed a new material which is the first to react magnetically to electrical fields at room temperature. Previously this was only at all possible at extremely low and unpractical temperatures. Electric fields are technically much easier and cheaper to produce than magnetic fields for which you need power guzzling coils.

The researchers have now found a way to control magnetism using electric fields at “normal” temperatures, thus fulfilling a dream. The high-precision experiments were made possible in a highly specialized measuring chamber built by the Ruhr-Universität Bochum at the Helmholtz Centre in Berlin. The research group from Paris and Berlin with the participation of RUB scientists reported on their findings in “Nature Materials”.

ALICE in wonderland

The “multiferroic” property of the new material was demonstrated in the measuring chamber ALICE – so called because, like “Alice in wonderland” it can look beneath the surface of things. Here a specific range of X-rays is used to study magnetic nanostructures. The measuring chamber, developed by Bochum’s physicists and funded by the Federal Ministry for Education and Research, has successfully been in use since 2007 at the electron storage ring BESSY II in Berlin. With the newly discovered material properties of BaTiO3 (bismuth-titanium oxide), in future it will be possible to design components such as data storage and logical switches that are controlled with electric instead of magnetic fields.

Ferromagnetic and ferroelectric properties

Ferromagnetic materials such as iron can be affected by magnetic fields. All atomic magnetic dipoles are aligned in the magnetic field. In ferroelectric materials, electric dipoles - two separate and opposite charges - replace the magnetic dipoles, so they can be aligned in an electric field. In very rare cases, so-called multiferroic materials respond to both fields - magnetic and electric.

Multiferroic at room temperature

The researchers produced this multiferroic material by vapour coating ultra-thin ferromagnetic iron layers onto ferroelectric bismuth-titanium oxide layers. In so doing, they were able to establish that the otherwise non-magnetic ferroelectric material becomes ferromagnetic at the interface between the two ferromagnetic layers. Thus, the researchers have developed the world’s first multiferroic material that reacts to both magnetic and electric fields at room temperature.

Magnetic X-ray scattering throws light on new control mechanism

The scientists demonstrated this interfacial magnetism using the spectroscopic method “X-ray magnetic circular dichroism”. In this method, the polarisation of the X-rays is affected by magnetism – in a way which is similar to the famous “Faraday effect” in optics. X-ray magnetic circular dichroism has the advantage that it can be applied to every single element in the material investigated. With this method, the researchers were able to show that all three elements in the ferroelectric material - bismuth, oxygen and titanium - react ferromagnetically at the interface to iron, although these atoms are otherwise not magnetic.

An extremely sophisticated method

“The method of X-ray magnetic circular dichroism is highly complex”, said Prof. Dr. Hartmut Zabel, Chair of Experimental Physics at the RUB. The measuring chamber ALICE combines X-ray scattering with X-ray spectroscopy. “This is an extremely sophisticated and very sensitive method”, explained Prof. Zabel. “The high precision of the detectors and all the goniometers in the chamber led to the success of the experiments conducted by the international measuring team.”

Bibliographic record

S. Valencia et al.: “Interface-induced room-temperature multiferroicity in BaTiO3”. Nature Materials, DOI: 10.1038/NMAT3098

Further information

Prof. Dr. Hartmut Zabel, Chair of Experimental Physics / Solid State Physics at the Ruhr-Universität Bochum, tel. +49 234 32 23649, e-mail: hartmut.zabel@rub.de

Editor: Jens Wylkop

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/

More articles from Materials Sciences:

nachricht Glass's off-kilter harmonies
18.01.2017 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Explaining how 2-D materials break at the atomic level
18.01.2017 | Institute for Basic Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>