Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Nature Materials”: Controlling magnetism with electric fields

23.08.2011
“Nature Materials”: new multiferroic material developed
RUB-researchers make high-precision measurement possible with X-ray scattering

An international team of researchers from France and Germany has developed a new material which is the first to react magnetically to electrical fields at room temperature. Previously this was only at all possible at extremely low and unpractical temperatures. Electric fields are technically much easier and cheaper to produce than magnetic fields for which you need power guzzling coils.

The researchers have now found a way to control magnetism using electric fields at “normal” temperatures, thus fulfilling a dream. The high-precision experiments were made possible in a highly specialized measuring chamber built by the Ruhr-Universität Bochum at the Helmholtz Centre in Berlin. The research group from Paris and Berlin with the participation of RUB scientists reported on their findings in “Nature Materials”.

ALICE in wonderland

The “multiferroic” property of the new material was demonstrated in the measuring chamber ALICE – so called because, like “Alice in wonderland” it can look beneath the surface of things. Here a specific range of X-rays is used to study magnetic nanostructures. The measuring chamber, developed by Bochum’s physicists and funded by the Federal Ministry for Education and Research, has successfully been in use since 2007 at the electron storage ring BESSY II in Berlin. With the newly discovered material properties of BaTiO3 (bismuth-titanium oxide), in future it will be possible to design components such as data storage and logical switches that are controlled with electric instead of magnetic fields.

Ferromagnetic and ferroelectric properties

Ferromagnetic materials such as iron can be affected by magnetic fields. All atomic magnetic dipoles are aligned in the magnetic field. In ferroelectric materials, electric dipoles - two separate and opposite charges - replace the magnetic dipoles, so they can be aligned in an electric field. In very rare cases, so-called multiferroic materials respond to both fields - magnetic and electric.

Multiferroic at room temperature

The researchers produced this multiferroic material by vapour coating ultra-thin ferromagnetic iron layers onto ferroelectric bismuth-titanium oxide layers. In so doing, they were able to establish that the otherwise non-magnetic ferroelectric material becomes ferromagnetic at the interface between the two ferromagnetic layers. Thus, the researchers have developed the world’s first multiferroic material that reacts to both magnetic and electric fields at room temperature.

Magnetic X-ray scattering throws light on new control mechanism

The scientists demonstrated this interfacial magnetism using the spectroscopic method “X-ray magnetic circular dichroism”. In this method, the polarisation of the X-rays is affected by magnetism – in a way which is similar to the famous “Faraday effect” in optics. X-ray magnetic circular dichroism has the advantage that it can be applied to every single element in the material investigated. With this method, the researchers were able to show that all three elements in the ferroelectric material - bismuth, oxygen and titanium - react ferromagnetically at the interface to iron, although these atoms are otherwise not magnetic.

An extremely sophisticated method

“The method of X-ray magnetic circular dichroism is highly complex”, said Prof. Dr. Hartmut Zabel, Chair of Experimental Physics at the RUB. The measuring chamber ALICE combines X-ray scattering with X-ray spectroscopy. “This is an extremely sophisticated and very sensitive method”, explained Prof. Zabel. “The high precision of the detectors and all the goniometers in the chamber led to the success of the experiments conducted by the international measuring team.”

Bibliographic record

S. Valencia et al.: “Interface-induced room-temperature multiferroicity in BaTiO3”. Nature Materials, DOI: 10.1038/NMAT3098

Further information

Prof. Dr. Hartmut Zabel, Chair of Experimental Physics / Solid State Physics at the Ruhr-Universität Bochum, tel. +49 234 32 23649, e-mail: hartmut.zabel@rub.de

Editor: Jens Wylkop

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>