Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Nature Materials”: Controlling magnetism with electric fields

23.08.2011
“Nature Materials”: new multiferroic material developed
RUB-researchers make high-precision measurement possible with X-ray scattering

An international team of researchers from France and Germany has developed a new material which is the first to react magnetically to electrical fields at room temperature. Previously this was only at all possible at extremely low and unpractical temperatures. Electric fields are technically much easier and cheaper to produce than magnetic fields for which you need power guzzling coils.

The researchers have now found a way to control magnetism using electric fields at “normal” temperatures, thus fulfilling a dream. The high-precision experiments were made possible in a highly specialized measuring chamber built by the Ruhr-Universität Bochum at the Helmholtz Centre in Berlin. The research group from Paris and Berlin with the participation of RUB scientists reported on their findings in “Nature Materials”.

ALICE in wonderland

The “multiferroic” property of the new material was demonstrated in the measuring chamber ALICE – so called because, like “Alice in wonderland” it can look beneath the surface of things. Here a specific range of X-rays is used to study magnetic nanostructures. The measuring chamber, developed by Bochum’s physicists and funded by the Federal Ministry for Education and Research, has successfully been in use since 2007 at the electron storage ring BESSY II in Berlin. With the newly discovered material properties of BaTiO3 (bismuth-titanium oxide), in future it will be possible to design components such as data storage and logical switches that are controlled with electric instead of magnetic fields.

Ferromagnetic and ferroelectric properties

Ferromagnetic materials such as iron can be affected by magnetic fields. All atomic magnetic dipoles are aligned in the magnetic field. In ferroelectric materials, electric dipoles - two separate and opposite charges - replace the magnetic dipoles, so they can be aligned in an electric field. In very rare cases, so-called multiferroic materials respond to both fields - magnetic and electric.

Multiferroic at room temperature

The researchers produced this multiferroic material by vapour coating ultra-thin ferromagnetic iron layers onto ferroelectric bismuth-titanium oxide layers. In so doing, they were able to establish that the otherwise non-magnetic ferroelectric material becomes ferromagnetic at the interface between the two ferromagnetic layers. Thus, the researchers have developed the world’s first multiferroic material that reacts to both magnetic and electric fields at room temperature.

Magnetic X-ray scattering throws light on new control mechanism

The scientists demonstrated this interfacial magnetism using the spectroscopic method “X-ray magnetic circular dichroism”. In this method, the polarisation of the X-rays is affected by magnetism – in a way which is similar to the famous “Faraday effect” in optics. X-ray magnetic circular dichroism has the advantage that it can be applied to every single element in the material investigated. With this method, the researchers were able to show that all three elements in the ferroelectric material - bismuth, oxygen and titanium - react ferromagnetically at the interface to iron, although these atoms are otherwise not magnetic.

An extremely sophisticated method

“The method of X-ray magnetic circular dichroism is highly complex”, said Prof. Dr. Hartmut Zabel, Chair of Experimental Physics at the RUB. The measuring chamber ALICE combines X-ray scattering with X-ray spectroscopy. “This is an extremely sophisticated and very sensitive method”, explained Prof. Zabel. “The high precision of the detectors and all the goniometers in the chamber led to the success of the experiments conducted by the international measuring team.”

Bibliographic record

S. Valencia et al.: “Interface-induced room-temperature multiferroicity in BaTiO3”. Nature Materials, DOI: 10.1038/NMAT3098

Further information

Prof. Dr. Hartmut Zabel, Chair of Experimental Physics / Solid State Physics at the Ruhr-Universität Bochum, tel. +49 234 32 23649, e-mail: hartmut.zabel@rub.de

Editor: Jens Wylkop

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/

More articles from Materials Sciences:

nachricht The stacked colour sensor
16.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures
16.11.2017 | Karlsruher Institut für Technologie (KIT)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>