Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Natural Solar Collectors on Butterfly Wings Inspire More Powerful Solar Cells

06.02.2009
The discovery that butterfly wings have scales that act as tiny solar collectors has led scientists in China and Japan to design a more efficient solar cell that could be used for powering homes, businesses, and other applications in the future. Their study appeared in the Jan. 13 issue of ACS’ Chemistry of Materials, a bi-weekly journal.

In the study, Di Zhang and colleagues note that scientists are searching for new materials to improve light-harvesting in so-called dye-sensitized solar cells, also known as Grätzel cells for inventor Michael Grätzel. These cells have the highest light-conversion efficiencies among all solar cells — as high as 10 percent.

The researchers turned to the microscopic solar scales on butterfly wings in their search for improvements. Using natural butterfly wings as a mold or template, they made copies of the solar collectors and transferred those light-harvesting structures to Grätzel cells. Laboratory tests showed that the butterfly wing solar collector absorbed light more efficiently than conventional dye-sensitized cells. The fabrication process is simpler and faster than other methods, and could be used to manufacture other commercially valuable devices, the researchers say. - MTS

ARTICLE #2 FOR IMMEDIATE RELEASE
“Novel Photoanode Structure Templated from Butterfly Wing Scales”
DOWNLOAD FULL TEXT ARTICLE:
http://pubs.acs.org/stoken/presspac/presspac/full/10.1021/cm702458p
CONTACT:
Di Zhang, Ph.D.
State Key Lab of Metal Matrix Composites
Shanghai Jiao Tong University
Shanghai, People’s Republic of China
Phone: 86-021-3420 2634
Fax: 86-021-3420-2749
Email: zhangdi@sjtu.edu.cn

Michael Woods | Newswise Science News
Further information:
http://www.acs.org

More articles from Materials Sciences:

nachricht New gel-like coating beefs up the performance of lithium-sulfur batteries
22.03.2017 | Yale University

nachricht Pulverizing electronic waste is green, clean -- and cold
22.03.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>